选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

LabelSchema - Amazon Fraud Detector
此页面尚未翻译为您的语言。 请求翻译

LabelSchema

The label schema.

Contents

labelMapper

The label mapper maps the Amazon Fraud Detector supported model classification labels (FRAUD, LEGIT) to the appropriate event type labels. For example, if "FRAUD" and "LEGIT" are Amazon Fraud Detector supported labels, this mapper could be: {"FRAUD" => ["0"], "LEGIT" => ["1"]} or {"FRAUD" => ["false"], "LEGIT" => ["true"]} or {"FRAUD" => ["fraud", "abuse"], "LEGIT" => ["legit", "safe"]}. The value part of the mapper is a list, because you may have multiple label variants from your event type for a single Amazon Fraud Detector label.

Type: String to array of strings map

Required: No

unlabeledEventsTreatment

The action to take for unlabeled events.

  • Use IGNORE if you want the unlabeled events to be ignored. This is recommended when the majority of the events in the dataset are labeled.

  • Use FRAUD if you want to categorize all unlabeled events as “Fraud”. This is recommended when most of the events in your dataset are fraudulent.

  • Use LEGIT if you want to categorize all unlabeled events as “Legit”. This is recommended when most of the events in your dataset are legitimate.

  • Use AUTO if you want Amazon Fraud Detector to decide how to use the unlabeled data. This is recommended when there is significant unlabeled events in the dataset.

By default, Amazon Fraud Detector ignores the unlabeled data.

Type: String

Valid Values: IGNORE | FRAUD | LEGIT | AUTO

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

下一主题:

LogOddsMetric

上一主题:

Label
隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。