CreateRealtimeEndpoint
Creates a real-time endpoint for the MLModel
. The endpoint contains the URI of the MLModel
; that is, the location to send real-time prediction requests for the specified MLModel
.
Request Syntax
{
"MLModelId": "string
"
}
Request Parameters
For information about the parameters that are common to all actions, see Common Parameters.
The request accepts the following data in JSON format.
- MLModelId
-
The ID assigned to the
MLModel
during creation.Type: String
Length Constraints: Minimum length of 1. Maximum length of 64.
Pattern:
[a-zA-Z0-9_.-]+
Required: Yes
Response Syntax
{
"MLModelId": "string",
"RealtimeEndpointInfo": {
"CreatedAt": number,
"EndpointStatus": "string",
"EndpointUrl": "string",
"PeakRequestsPerSecond": number
}
}
Response Elements
If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
- MLModelId
-
A user-supplied ID that uniquely identifies the
MLModel
. This value should be identical to the value of theMLModelId
in the request.Type: String
Length Constraints: Minimum length of 1. Maximum length of 64.
Pattern:
[a-zA-Z0-9_.-]+
- RealtimeEndpointInfo
-
The endpoint information of the
MLModel
Type: RealtimeEndpointInfo object
Errors
For information about the errors that are common to all actions, see Common Errors.
- InternalServerException
-
An error on the server occurred when trying to process a request.
HTTP Status Code: 500
- InvalidInputException
-
An error on the client occurred. Typically, the cause is an invalid input value.
HTTP Status Code: 400
- ResourceNotFoundException
-
A specified resource cannot be located.
HTTP Status Code: 400
Examples
The following is a sample request and response of the CreateRealtimeEndpoint operation.
This example illustrates one usage of CreateRealtimeEndpoint.
Sample Request
POST / HTTP/1.1
Host: machinelearning.<region>.<domain>
x-amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=contenttype;date;host;user-agent;x-amz-date;x-amz-target;x-amzn-requestid,Signature=<Signature>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.1
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive
X-Amz-Target: AmazonML_20141212.CreateRealtimeEndpoint
{
"MLModelId": "ml-ModelExampleId",
}
Sample Response
HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
Content-Type: application/x-amz-json-1.1
Content-Length: <PayloadSizeBytes>
Date: <Date>
{
"MLModelId": "ml-ModelExampleId",
"EndpointInfo":
{
"CreatedAt": 1422488124.71,
"EndpointUrl": "<realtime endpoint from Amazon Machine Learning for ml-ModelExampleId>",
"EndpointStatus": "READY",
"PeakRequestsPerSecond": 200
}
}
See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following: