本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
优化 Object2Vec 模型
自动模型优化(也称作超参数优化)通过运行很多在数据集上测试一系列超参数的作业来查找模型的最佳版本。您可以选择可优化超参数、每个超参数的值范围和一个目标指标。对于目标指标,您可以使用该算法计算的指标之一。自动模型优化将搜索所选超参数以找到导致优化目标指标的模型的值组合。
有关模型优化的更多信息,请参阅自动调整模型 SageMaker。
Object2Vec 算法计算的指标
该 Object2Vec 算法同时具有分类和回归指标。output_layer
类型确定可用于自动模型优化的指标。
Object2Vec 算法计算的回归量指标
该算法报告均方误差回归量指标,该指标在测试和验证期间计算。在为回归任务优化模型时,请选择此指标作为目标。
指标名称 | 描述 | 优化方向 |
---|---|---|
test:mean_squared_error |
均方根误差 |
最小化 |
validation:mean_squared_error |
均方根误差 |
最小化 |
Object2Vec 算法计算的分类指标
Object2Vec 算法报告在测试和验证期间计算的准确度和交叉熵分类指标。在为分类任务优化模型时,请选择其中之一作为目标。
指标名称 | 描述 | 优化方向 |
---|---|---|
test:accuracy |
准确性 |
最大化 |
test:cross_entropy |
交叉熵 |
最小化 |
validation:accuracy |
准确性 |
最大化 |
validation:cross_entropy |
交叉熵 |
最小化 |
可优化 Object2Vec 超参数
您可为 Object2Vec 算法优化以下超参数。
超参数名称 | 超参数类型 | 建议的范围和值 |
---|---|---|
dropout |
ContinuousParameterRange |
MinValue: 0.0, MaxValue: 1.0 |
early_stopping_patience |
IntegerParameterRange |
MinValue: 1, MaxValue: 5 |
early_stopping_tolerance |
ContinuousParameterRange |
MinValue: 0.001, MaxValue: 0.1 |
enc_dim |
IntegerParameterRange |
MinValue: 4, MaxValue: 4096 |
enc0_cnn_filter_width |
IntegerParameterRange |
MinValue: 1, MaxValue: 5 |
enc0_layers |
IntegerParameterRange |
MinValue: 1, MaxValue: 4 |
enc0_token_embedding_dim |
IntegerParameterRange |
MinValue: 5, MaxValue: 300 |
enc1_cnn_filter_width |
IntegerParameterRange |
MinValue: 1, MaxValue: 5 |
enc1_layers |
IntegerParameterRange |
MinValue: 1, MaxValue: 4 |
enc1_token_embedding_dim |
IntegerParameterRange |
MinValue: 5, MaxValue: 300 |
epochs |
IntegerParameterRange |
MinValue: 4, MaxValue: 20 |
learning_rate |
ContinuousParameterRange |
MinValue: 1e-6, MaxValue: 1.0 |
mini_batch_size |
IntegerParameterRange |
MinValue: 1, MaxValue: 8192 |
mlp_activation |
CategoricalParameterRanges |
[ |
mlp_dim |
IntegerParameterRange |
MinValue: 16, MaxValue: 1024 |
mlp_layers |
IntegerParameterRange |
MinValue: 1, MaxValue: 4 |
optimizer |
CategoricalParameterRanges | [ |
weight_decay |
ContinuousParameterRange |
MinValue: 0.0, MaxValue: 1.0 |