選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

CreateMLModel - MachineLearning
此頁面尚未翻譯為您的語言。 請求翻譯

CreateMLModel

Creates a new MLModel using the DataSource and the recipe as information sources.

An MLModel is nearly immutable. Users can update only the MLModelName and the ScoreThreshold in an MLModel without creating a new MLModel.

CreateMLModel is an asynchronous operation. In response to CreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel status to PENDING. After the MLModel has been created and ready is for use, Amazon ML sets the status to COMPLETED.

You can use the GetMLModel operation to check the progress of the MLModel during the creation operation.

CreateMLModel requires a DataSource with computed statistics, which can be created by setting ComputeStatistics to true in CreateDataSourceFromRDS, CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.

Request Syntax

{ "MLModelId": "string", "MLModelName": "string", "MLModelType": "string", "Parameters": { "string" : "string" }, "Recipe": "string", "RecipeUri": "string", "TrainingDataSourceId": "string" }

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

MLModelId

A user-supplied ID that uniquely identifies the MLModel.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

MLModelName

A user-supplied name or description of the MLModel.

Type: String

Length Constraints: Maximum length of 1024.

Pattern: .*\S.*|^$

Required: No

MLModelType

The category of supervised learning that this MLModel will address. Choose from the following types:

  • Choose REGRESSION if the MLModel will be used to predict a numeric value.

  • Choose BINARY if the MLModel result has two possible values.

  • Choose MULTICLASS if the MLModel result has a limited number of values.

For more information, see the Amazon Machine Learning Developer Guide.

Type: String

Valid Values: REGRESSION | BINARY | MULTICLASS

Required: Yes

Parameters

A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs.

The following is the current set of training parameters:

  • sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.

    The value is an integer that ranges from 100000 to 2147483648. The default value is 33554432.

  • sgd.maxPasses - The number of times that the training process traverses the observations to build the MLModel. The value is an integer that ranges from 1 to 100. The default value is 10.

  • sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values are auto and none. The default value is none. We strongly recommend that you shuffle your data.

  • sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly.

  • sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly.

Type: String to string map

Required: No

Recipe

The data recipe for creating the MLModel. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.

Type: String

Length Constraints: Maximum length of 131071.

Required: No

RecipeUri

The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: s3://([^/]+)(/.*)?

Required: No

TrainingDataSourceId

The DataSource that points to the training data.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9_.-]+

Required: Yes

Response Syntax

{ "MLModelId": "string" }

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

MLModelId

A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelId in the request.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 64.

Pattern: [a-zA-Z0-9_.-]+

Errors

For information about the errors that are common to all actions, see Common Errors.

IdempotentParameterMismatchException

A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.

HTTP Status Code: 400

InternalServerException

An error on the server occurred when trying to process a request.

HTTP Status Code: 500

InvalidInputException

An error on the client occurred. Typically, the cause is an invalid input value.

HTTP Status Code: 400

Examples

The following is a sample request and response of the CreateMLModel operation.

This example illustrates one usage of CreateMLModel.

Sample Request

POST / HTTP/1.1 Host: machinelearning.<region>.<domain> x-amz-Date: <Date> Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=contenttype;date;host;user-agent;x-amz-date;x-amz-target;x-amzn-requestid,Signature=<Signature> User-Agent: <UserAgentString> Content-Type: application/x-amz-json-1.1 Content-Length: <PayloadSizeBytes> Connection: Keep-Alive X-Amz-Target: AmazonML_20141212.CreateMLModel { "MLModelId": "exampleModelId", "MLModelName": "EXAMPLE", "MLModelType": "BINARY", "TrainingDataSourceId": "17SdAv6WC6r5vACAxF7U", "RecipeUri": "s3://eml-test-EXAMPLE/data.recipe.json" }

Sample Response

HTTP/1.1 200 OK x-amzn-RequestId: <RequestId> Content-Type: application/x-amz-json-1.1 Content-Length: <PayloadSizeBytes> Date: <Date> {"MLModelId":"exampleModelId"}

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。