本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
將指標歸因報告發佈到 Amazon S3
對於所有大量資料,如果您在建立指標歸因時提供 Amazon S3 儲存貯體,則可以選擇在每次為互動資料建立資料集匯入任務時,將指標報告發佈到 Amazon S3 儲存貯體。
若要將指標發佈到 Amazon S3,您可以在指標歸因中提供指向 Amazon S3 儲存貯體的路徑。然後,您可以在建立資料集匯入任務時將報表發佈到 Amazon S3。任務完成後,您可以在 Amazon S3 儲存貯體中找到指標。每次發佈指標時,Amazon Personalize 都會在您的 Amazon S3 儲存貯體中建立一個新檔案。檔案名稱包括匯入方法和日期,如下所示:
AggregatedAttributionMetrics - ImportMethod
-
Timestamp
.csv
以下是量度報表CSV檔案前幾列顯示方式的範例。此範例中的量度會報告兩個不同推薦人在 15 分鐘間隔內的總點擊次數。每個推薦人在 EVENT _ _ ATTRIBUTION SOURCE 欄中都以其 Amazon 資源名稱 (ARN) 來識別。
METRIC_NAME,EVENT_TYPE,VALUE,MATH_FUNCTION,EVENT_ATTRIBUTION_SOURCE,TIMESTAMP
COUNTWATCHES,WATCH,12.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender1Name,1666925124
COUNTWATCHES,WATCH,112.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender2Name,1666924224
COUNTWATCHES,WATCH,10.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender1Name,1666924224
COUNTWATCHES,WATCH,254.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender2Name,1666922424
COUNTWATCHES,WATCH,112.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender1Name,1666922424
COUNTWATCHES,WATCH,100.0,samplecount,arn:aws:personalize:us-west-2:acctNum:recommender/recommender2Name,1666922424
......
.....
將大量資料的指標發佈到 Amazon S3 (主控台)
若要使用 Amazon Personalize 主控台將指標發佈到 Amazon S3 儲存貯體,請建立資料集匯入任務,然後在將事件指標發佈到 S3 中為此匯入任務選擇發佈指標。
如需 step-by-step 指示,請參閱建立資料集匯入任務 (主控台)。
將大量資料的指標發佈到 Amazon S3 (AWS CLI)
若要使用 AWS Command Line Interface (AWS CLI) 將指標發佈到 Amazon S3 儲存貯體,請使用下列程式碼建立資料集匯入任務並提供publishAttributionMetricsToS3
旗標。如果您不想發佈特定工作的量度,請省略旗標。如需每個參數的資訊,請參閱CreateDatasetImportJob。
aws personalize create-dataset-import-job \
--job-name dataset import job name
\
--dataset-arn dataset arn
\
--data-source dataLocation=s3://amzn-s3-demo-bucket
/filename
\
--role-arn roleArn
\
--import-mode INCREMENTAL
\
--publish-attribution-metrics-to-s3
將大量資料的指標發佈到 Amazon S3 (AWS SDKs)
若要使用將指標發佈到 Amazon S3 儲存貯體 AWS SDKs,請建立資料集匯入任務並設publishAttributionMetricsToS3
定為 true。如需每個參數的資訊,請參閱CreateDatasetImportJob。
- SDK for Python (Boto3)
-
import boto3
personalize = boto3.client('personalize')
response = personalize.create_dataset_import_job(
jobName = 'YourImportJob
',
datasetArn = 'dataset_arn
',
dataSource = {'dataLocation':'s3://amzn-s3-demo-bucket/file.csv
'},
roleArn = 'role_arn
',
importMode = 'INCREMENTAL',
publishAttributionMetricsToS3 = True
)
dsij_arn = response['datasetImportJobArn']
print ('Dataset Import Job arn: ' + dsij_arn)
description = personalize.describe_dataset_import_job(
datasetImportJobArn = dsij_arn)['datasetImportJob']
print('Name: ' + description['jobName'])
print('ARN: ' + description['datasetImportJobArn'])
print('Status: ' + description['status'])
- SDK for Java 2.x
-
public static String createPersonalizeDatasetImportJob(PersonalizeClient personalizeClient,
String jobName,
String datasetArn,
String s3BucketPath,
String roleArn,
ImportMode importMode,
boolean publishToS3) {
long waitInMilliseconds = 60 * 1000;
String status;
String datasetImportJobArn;
try {
DataSource importDataSource = DataSource.builder()
.dataLocation(s3BucketPath)
.build();
CreateDatasetImportJobRequest createDatasetImportJobRequest = CreateDatasetImportJobRequest.builder()
.datasetArn(datasetArn)
.dataSource(importDataSource)
.jobName(jobName)
.roleArn(roleArn)
.importMode(importMode)
.publishAttributionMetricsToS3(publishToS3)
.build();
datasetImportJobArn = personalizeClient.createDatasetImportJob(createDatasetImportJobRequest)
.datasetImportJobArn();
DescribeDatasetImportJobRequest describeDatasetImportJobRequest = DescribeDatasetImportJobRequest.builder()
.datasetImportJobArn(datasetImportJobArn)
.build();
long maxTime = Instant.now().getEpochSecond() + 3 * 60 * 60;
while (Instant.now().getEpochSecond() < maxTime) {
DatasetImportJob datasetImportJob = personalizeClient
.describeDatasetImportJob(describeDatasetImportJobRequest)
.datasetImportJob();
status = datasetImportJob.status();
System.out.println("Dataset import job status: " + status);
if (status.equals("ACTIVE") || status.equals("CREATE FAILED")) {
break;
}
try {
Thread.sleep(waitInMilliseconds);
} catch (InterruptedException e) {
System.out.println(e.getMessage());
}
}
return datasetImportJobArn;
} catch (PersonalizeException e) {
System.out.println(e.awsErrorDetails().errorMessage());
}
return "";
}
- SDK for JavaScript v3
// Get service clients and commands using ES6 syntax.
import { CreateDatasetImportJobCommand, PersonalizeClient } from
"@aws-sdk/client-personalize";
// create personalizeClient
const personalizeClient = new PersonalizeClient({
region: "REGION"
});
// Set the dataset import job parameters.
export const datasetImportJobParam = {
datasetArn: 'DATASET_ARN', /* required */
dataSource: {
dataLocation: 's3://amzn-s3-demo-bucket/<folderName>/<CSVfilename>.csv' /* required */
},
jobName: 'NAME', /* required */
roleArn: 'ROLE_ARN', /* required */
importMode: "FULL", /* optional, default is FULL */
publishAttributionMetricsToS3: true /* set to true to publish metrics to Amazon S3 bucket */
};
export const run = async () => {
try {
const response = await personalizeClient.send(new CreateDatasetImportJobCommand(datasetImportJobParam));
console.log("Success", response);
return response; // For unit tests.
} catch (err) {
console.log("Error", err);
}
};
run();