新增人臉到集合 - Amazon Rekognition

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

新增人臉到集合

您可以使用此IndexFaces作業偵測影像中的臉孔並將其加入集合中。對於每個偵測到的人臉,Amazon Rekognition 將擷取人臉特徵並將特徵資訊存放於資料庫中。此外,該命令將為每個在指定人臉集合中偵測到的人臉儲存中繼資料。Amazon Rekognition 不會儲存實際的映像位元組。

如需為編制索引提供適合臉部的相關資訊,請參閱 人臉比較輸入映像的建議

IndexFaces 操作將保留每個人臉的下列資訊:

  • 多維度人臉特徵IndexFaces 使用人臉分析來擷取人臉特徵的多維度資訊,並將資訊儲存於人臉集合中。您無法直接存取此資訊。不過,Amazon Rekognition 會在搜尋人臉集合並比對人臉時使用此資訊。

     

  • 繼資料 — 每個臉孔的中繼資料包括邊界方框、信賴度 (邊界方框包含臉孔)、由 Amazon Rekognition (臉部 ID 和影像 ID) IDs 指派的外部影像 ID,以及外部影像 ID (如果您已提供)。此信息將返回給您以響應IndexFacesAPI呼叫。如需範例,請參閱下列範例回應中的 face 元素。

    服務會傳回此中繼資料以回應下列API呼叫:

     

IndexFaces 索引的臉部數量取決於與輸入集合相關聯的臉部偵測模型的版本。如需詳細資訊,請參閱了解模型版本控

有關索引面的資訊會傳回FaceRecord物件陣列中。

您可能想要將編入索引的人臉與偵測到這些人臉的映像連結。例如,您可能想要維護映像的使用者端索引以及映像中的人臉。若要將人臉與映像連結,請在 ExternalImageId 請求參數中指定一個映像 ID。映像 ID 可以是檔案名稱或建立的另一個 ID。

除了先前保API留在臉部集合中的資訊之外,API還會傳回集合中未保留的臉孔詳細資料。(請參閱下列範例回應中的 faceDetail 元素)。

注意

DetectFaces 將傳回相同的資訊,因此您不需要同時呼叫 DetectFacesIndexFaces

篩選人臉

此 IndexFaces 作業可讓您篩選從影像建立索引的臉孔。運用 IndexFaces,您可以指定索引建立時所要使用的最多人臉數目,或者選擇只對高品質偵測人臉建立索引。

使用 MaxFaces 輸入參數,您可以指定 IndexFaces 在建立索引時所用的最多人臉數目。若您在建立索引時想要運用映像中尺寸最大的人臉,而不要使用尺寸最小的人臉時,例如,背景中站立人群的人臉,就能使用這項參數。

在預設情況下,IndexFaces 選擇用於篩選出臉部的品質列。您可以使用 QualityFilter 輸入參數,以明確設定品質列。這些值為:

  • AUTO:Amazon Rekognition 選擇並不用於篩選出人臉的品質列 (預設值)。

  • LOW:除了品質最低的人臉之外,所有人臉都會加以索引。

  • MEDIUM

  • HIGH:僅對品質最高的人臉行索引。

  • NONE:不會根據品質來篩選掉任何人臉。

IndexFaces 篩選人臉的原因如下:

  • 相較於映像尺寸,人臉過小。

  • 臉部過於模糊。

  • 映像過暗。

  • 臉部表情過於誇張。

  • 臉部沒有足夠的細節,不適合臉部搜尋。

注意

若要使用品質篩選,您必須使用臉部模型第 3 版或更高版本的相關聯集合。若要取得與集合關聯的臉部模型版本,請呼叫DescribeCollection

未建立索引之臉孔的相關資訊會傳回UnindexedFace物件陣列中。IndexFacesReasons 陣列包含為何無法為人臉建立索引的原因清單。例如,當值為 EXCEEDS_MAX_FACES 時,表示因為已偵測到透過 MaxFaces 指定的人臉數目,所以無法為人臉建立索引。

如需詳細資訊,請參閱管理集合中的人臉

將面加入至集合的步驟 (SDK)
  1. 如果您尚未執行:

    1. 建立或更新具有 AmazonRekognitionFullAccessAmazonS3ReadOnlyAccess 許可的使用者。如需詳細資訊,請參閱步驟 1:設定AWS帳戶並建立使用者

    2. 安裝並設定 AWS CLI 和 AWS SDKs. 如需詳細資訊,請參閱步驟 2:設定 AWS CLI 以及 AWS SDKs

  2. 將映像 (含有一個或多個人臉) 上傳至您的 Amazon S3 儲存貯體。

    如需指示說明,請參閱《Amazon Simple Storage Service 使用者指南》中的上傳物件至 Amazon S3

  3. 使用下列範例來呼叫 IndexFaces 操作。

    Java

    此範例顯示新增到集合的人臉的人臉識別符。

    collectionId 的值變更為要新增到人臉的集合的名稱。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。.withMaxFaces(1) 參數會將用於建立索引的人臉數目限制為 1。移除或變更其值以符合您的需求。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package aws.example.rekognition.image; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.FaceRecord; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.IndexFacesRequest; import com.amazonaws.services.rekognition.model.IndexFacesResult; import com.amazonaws.services.rekognition.model.QualityFilter; import com.amazonaws.services.rekognition.model.S3Object; import com.amazonaws.services.rekognition.model.UnindexedFace; import java.util.List; public class AddFacesToCollection { public static final String collectionId = "MyCollection"; public static final String bucket = "bucket"; public static final String photo = "input.jpg"; public static void main(String[] args) throws Exception { AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); Image image = new Image() .withS3Object(new S3Object() .withBucket(bucket) .withName(photo)); IndexFacesRequest indexFacesRequest = new IndexFacesRequest() .withImage(image) .withQualityFilter(QualityFilter.AUTO) .withMaxFaces(1) .withCollectionId(collectionId) .withExternalImageId(photo) .withDetectionAttributes("DEFAULT"); IndexFacesResult indexFacesResult = rekognitionClient.indexFaces(indexFacesRequest); System.out.println("Results for " + photo); System.out.println("Faces indexed:"); List<FaceRecord> faceRecords = indexFacesResult.getFaceRecords(); for (FaceRecord faceRecord : faceRecords) { System.out.println(" Face ID: " + faceRecord.getFace().getFaceId()); System.out.println(" Location:" + faceRecord.getFaceDetail().getBoundingBox().toString()); } List<UnindexedFace> unindexedFaces = indexFacesResult.getUnindexedFaces(); System.out.println("Faces not indexed:"); for (UnindexedFace unindexedFace : unindexedFaces) { System.out.println(" Location:" + unindexedFace.getFaceDetail().getBoundingBox().toString()); System.out.println(" Reasons:"); for (String reason : unindexedFace.getReasons()) { System.out.println(" " + reason); } } } }
    Java V2

    此代碼取自 AWS 文檔SDK示例 GitHub 存儲庫。請參閱此處的完整範例。

    //snippet-start:[rekognition.java2.add_faces_collection.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.IndexFacesResponse; import software.amazon.awssdk.services.rekognition.model.IndexFacesRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.QualityFilter; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceRecord; import software.amazon.awssdk.services.rekognition.model.UnindexedFace; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Reason; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; //snippet-end:[rekognition.java2.add_faces_collection.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class AddFacesToCollection { public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <collectionId> <sourceImage>\n\n" + "Where:\n" + " collectionName - The name of the collection.\n" + " sourceImage - The path to the image (for example, C:\\AWS\\pic1.png). \n\n"; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); addToCollection(rekClient, collectionId, sourceImage); rekClient.close(); } // snippet-start:[rekognition.java2.add_faces_collection.main] public static void addToCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); IndexFacesRequest facesRequest = IndexFacesRequest.builder() .collectionId(collectionId) .image(souImage) .maxFaces(1) .qualityFilter(QualityFilter.AUTO) .detectionAttributes(Attribute.DEFAULT) .build(); IndexFacesResponse facesResponse = rekClient.indexFaces(facesRequest); System.out.println("Results for the image"); System.out.println("\n Faces indexed:"); List<FaceRecord> faceRecords = facesResponse.faceRecords(); for (FaceRecord faceRecord : faceRecords) { System.out.println(" Face ID: " + faceRecord.face().faceId()); System.out.println(" Location:" + faceRecord.faceDetail().boundingBox().toString()); } List<UnindexedFace> unindexedFaces = facesResponse.unindexedFaces(); System.out.println("Faces not indexed:"); for (UnindexedFace unindexedFace : unindexedFaces) { System.out.println(" Location:" + unindexedFace.faceDetail().boundingBox().toString()); System.out.println(" Reasons:"); for (Reason reason : unindexedFace.reasons()) { System.out.println("Reason: " + reason); } } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } // snippet-end:[rekognition.java2.add_faces_collection.main] }
    AWS CLI

    此 AWS CLI 指令會顯示index-facesCLI作業的JSON輸出。

    以您要儲存臉部的集合之名稱取代 collection-id 的值。將 BucketName 的值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像檔案名稱。max-faces 參數會將用於建立索引的人臉數目限制為 1。移除或變更其值以符合您的需求。將建立 Rekognition 工作階段的行中 profile_name 值取代為您開發人員設定檔的名稱。

    aws rekognition index-faces --image '{"S3Object":{"Bucket":"bucket-name","Name":"file-name"}}' --collection-id "collection-id" \ --max-faces 1 --quality-filter "AUTO" --detection-attributes "ALL" \ --external-image-id "example-image.jpg" --profile profile-name

    如果您在 Windows 裝置CLI上存取,請使用雙引號而非單引號,並以反斜線 (即\) 逸出內部雙引號,以解決您可能遇到的任何剖析器錯誤。例如,請參閱下列內容:

    aws rekognition index-faces --image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"image-name\"}}" \ --collection-id "collection-id" --max-faces 1 --quality-filter "AUTO" --detection-attributes "ALL" \ --external-image-id "example-image.jpg" --profile profile-name
    Python

    此範例顯示新增到集合的人臉的人臉識別符。

    collectionId 的值變更為要新增到人臉的集合的名稱。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。MaxFaces 輸入參數會將用於建立索引的人臉數目限制為 1。移除或變更其值以符合您的需求。將建立 Rekognition 工作階段的行中 profile_name 值取代為您開發人員設定檔的名稱。

    # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) import boto3 def add_faces_to_collection(bucket, photo, collection_id): session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') response = client.index_faces(CollectionId=collection_id, Image={'S3Object': {'Bucket': bucket, 'Name': photo}}, ExternalImageId=photo, MaxFaces=1, QualityFilter="AUTO", DetectionAttributes=['ALL']) print('Results for ' + photo) print('Faces indexed:') for faceRecord in response['FaceRecords']: print(' Face ID: ' + faceRecord['Face']['FaceId']) print(' Location: {}'.format(faceRecord['Face']['BoundingBox'])) print('Faces not indexed:') for unindexedFace in response['UnindexedFaces']: print(' Location: {}'.format(unindexedFace['FaceDetail']['BoundingBox'])) print(' Reasons:') for reason in unindexedFace['Reasons']: print(' ' + reason) return len(response['FaceRecords']) def main(): bucket = 'bucket-name' collection_id = 'collection-id' photo = 'photo-name' indexed_faces_count = add_faces_to_collection(bucket, photo, collection_id) print("Faces indexed count: " + str(indexed_faces_count)) if __name__ == "__main__": main()
    .NET

    此範例顯示新增到集合的人臉的人臉識別符。

    collectionId 的值變更為要新增到人臉的集合的名稱。將 bucketphoto 的數值取代為您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與映像名稱。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) using System; using System.Collections.Generic; using Amazon.Rekognition; using Amazon.Rekognition.Model; public class AddFaces { public static void Example() { String collectionId = "MyCollection"; String bucket = "bucket"; String photo = "input.jpg"; AmazonRekognitionClient rekognitionClient = new AmazonRekognitionClient(); Image image = new Image() { S3Object = new S3Object() { Bucket = bucket, Name = photo } }; IndexFacesRequest indexFacesRequest = new IndexFacesRequest() { Image = image, CollectionId = collectionId, ExternalImageId = photo, DetectionAttributes = new List<String>(){ "ALL" } }; IndexFacesResponse indexFacesResponse = rekognitionClient.IndexFaces(indexFacesRequest); Console.WriteLine(photo + " added"); foreach (FaceRecord faceRecord in indexFacesResponse.FaceRecords) Console.WriteLine("Face detected: Faceid is " + faceRecord.Face.FaceId); } }

IndexFaces 操作請求

IndexFaces 的輸入是要索引的映像和新增人臉或人臉的集合。

{ "CollectionId": "MyCollection", "Image": { "S3Object": { "Bucket": "bucket", "Name": "input.jpg" } }, "ExternalImageId": "input.jpg", "DetectionAttributes": [ "DEFAULT" ], "MaxFaces": 1, "QualityFilter": "AUTO" }

IndexFaces 作業回應

IndexFaces 傳回有關在映像中偵測到的人臉的資訊。例如,下列JSON回應包括輸入影像中偵測到的臉孔的預設偵測屬性。此範例也會顯示因為超過MaxFaces輸入參數值而未建立索引的面孔 — Reasons 陣列包含 EXCEEDS_ MAX _ FACES。如果面因品質原因而未建立索引,則會Reasons包含諸如 LOW_ SHARPNESS 或 LOW_ 之類的值BRIGHTNESS。如需詳細資訊,請參閱UnindexedFace

{ "FaceModelVersion": "3.0", "FaceRecords": [ { "Face": { "BoundingBox": { "Height": 0.3247932195663452, "Left": 0.5055555701255798, "Top": 0.2743072211742401, "Width": 0.21444444358348846 }, "Confidence": 99.99998474121094, "ExternalImageId": "input.jpg", "FaceId": "b86e2392-9da1-459b-af68-49118dc16f87", "ImageId": "09f43d92-02b6-5cea-8fbd-9f187db2050d" }, "FaceDetail": { "BoundingBox": { "Height": 0.3247932195663452, "Left": 0.5055555701255798, "Top": 0.2743072211742401, "Width": 0.21444444358348846 }, "Confidence": 99.99998474121094, "Landmarks": [ { "Type": "eyeLeft", "X": 0.5751981735229492, "Y": 0.4010535478591919 }, { "Type": "eyeRight", "X": 0.6511467099189758, "Y": 0.4017036259174347 }, { "Type": "nose", "X": 0.6314528584480286, "Y": 0.4710812568664551 }, { "Type": "mouthLeft", "X": 0.5879443287849426, "Y": 0.5171778798103333 }, { "Type": "mouthRight", "X": 0.6444502472877502, "Y": 0.5164633989334106 } ], "Pose": { "Pitch": -10.313642501831055, "Roll": -1.0316886901855469, "Yaw": 18.079818725585938 }, "Quality": { "Brightness": 71.2919921875, "Sharpness": 78.74752044677734 } } } ], "OrientationCorrection": "", "UnindexedFaces": [ { "FaceDetail": { "BoundingBox": { "Height": 0.1329464465379715, "Left": 0.5611110925674438, "Top": 0.6832437515258789, "Width": 0.08777777850627899 }, "Confidence": 92.37225341796875, "Landmarks": [ { "Type": "eyeLeft", "X": 0.5796897411346436, "Y": 0.7452847957611084 }, { "Type": "eyeRight", "X": 0.6078574657440186, "Y": 0.742687463760376 }, { "Type": "nose", "X": 0.597953200340271, "Y": 0.7620673179626465 }, { "Type": "mouthLeft", "X": 0.5884202122688293, "Y": 0.7920381426811218 }, { "Type": "mouthRight", "X": 0.60627681016922, "Y": 0.7919750809669495 } ], "Pose": { "Pitch": 15.658954620361328, "Roll": -4.583454608917236, "Yaw": 10.558992385864258 }, "Quality": { "Brightness": 42.54612350463867, "Sharpness": 86.93206024169922 } }, "Reasons": [ "EXCEEDS_MAX_FACES" ] } ] }

要獲取所有面部信息,請為DetectionAttributes請求參數指定 ALL ''。例如,在以下範例回應中可找到 faceDetail 元素中的其它資訊,而這些資訊不會儲存在伺服器上:

  • 25 個臉部特徵點 (相較於上述範例中只有 5 個特徵點)

  • 十個面部屬性 (眼鏡、鬍鬚、人臉遮挡、眼睛凝視方向等)

  • 表情 (請參閱 emotion 元素)

face 元素提供保留在伺服器上的中繼資料。

FaceModelVersion 是與集合相關聯的臉部模型版本。如需詳細資訊,請參閱 了解模型版本控

OrientationCorrection 是映像的估計方向。如果您使用的臉部偵測模型版本大於第 3 版,則不會傳回方向更正資訊。如需詳細資訊,請參閱取得映像方向與週框方塊座標

下列範例回應顯示指定 [」ALL「] JSON 時傳回的回應:

{ "FaceModelVersion": "3.0", "FaceRecords": [ { "Face": { "BoundingBox": { "Height": 0.06333333253860474, "Left": 0.17185185849666595, "Top": 0.7366666793823242, "Width": 0.11061728745698929 }, "Confidence": 99.99999237060547, "ExternalImageId": "input.jpg", "FaceId": "578e2e1b-d0b0-493c-aa39-ba476a421a34", "ImageId": "9ba38e68-35b6-5509-9d2e-fcffa75d1653" }, "FaceDetail": { "AgeRange": { "High": 25, "Low": 15 }, "Beard": { "Confidence": 99.98077392578125, "Value": false }, "BoundingBox": { "Height": 0.06333333253860474, "Left": 0.17185185849666595, "Top": 0.7366666793823242, "Width": 0.11061728745698929 }, "Confidence": 99.99999237060547, "Emotions": [ { "Confidence": 95.40877532958984, "Type": "HAPPY" }, { "Confidence": 6.6088080406188965, "Type": "CALM" }, { "Confidence": 0.7385611534118652, "Type": "SAD" } ], "EyeDirection": { "yaw": 16.299732, "pitch": -6.407457, "confidence": 99.968704 } "Eyeglasses": { "Confidence": 99.96795654296875, "Value": false }, "EyesOpen": { "Confidence": 64.0671157836914, "Value": true }, "Gender": { "Confidence": 100, "Value": "Female" }, "Landmarks": [ { "Type": "eyeLeft", "X": 0.21361233294010162, "Y": 0.757106363773346 }, { "Type": "eyeRight", "X": 0.2518567442893982, "Y": 0.7599404454231262 }, { "Type": "nose", "X": 0.2262365221977234, "Y": 0.7711842060089111 }, { "Type": "mouthLeft", "X": 0.2050037682056427, "Y": 0.7801263332366943 }, { "Type": "mouthRight", "X": 0.2430567592382431, "Y": 0.7836716771125793 }, { "Type": "leftPupil", "X": 0.2161938101053238, "Y": 0.756662905216217 }, { "Type": "rightPupil", "X": 0.2523181438446045, "Y": 0.7603650689125061 }, { "Type": "leftEyeBrowLeft", "X": 0.20066319406032562, "Y": 0.7501518130302429 }, { "Type": "leftEyeBrowUp", "X": 0.2130996286869049, "Y": 0.7480520606040955 }, { "Type": "leftEyeBrowRight", "X": 0.22584207355976105, "Y": 0.7504606246948242 }, { "Type": "rightEyeBrowLeft", "X": 0.24509544670581818, "Y": 0.7526801824569702 }, { "Type": "rightEyeBrowUp", "X": 0.2582615911960602, "Y": 0.7516844868659973 }, { "Type": "rightEyeBrowRight", "X": 0.26881539821624756, "Y": 0.7554477453231812 }, { "Type": "leftEyeLeft", "X": 0.20624476671218872, "Y": 0.7568746209144592 }, { "Type": "leftEyeRight", "X": 0.22105035185813904, "Y": 0.7582521438598633 }, { "Type": "leftEyeUp", "X": 0.21401576697826385, "Y": 0.7553104162216187 }, { "Type": "leftEyeDown", "X": 0.21317370235919952, "Y": 0.7584449648857117 }, { "Type": "rightEyeLeft", "X": 0.24393919110298157, "Y": 0.7600628137588501 }, { "Type": "rightEyeRight", "X": 0.2598416209220886, "Y": 0.7605880498886108 }, { "Type": "rightEyeUp", "X": 0.2519053518772125, "Y": 0.7582084536552429 }, { "Type": "rightEyeDown", "X": 0.25177454948425293, "Y": 0.7612871527671814 }, { "Type": "noseLeft", "X": 0.2185886949300766, "Y": 0.774715781211853 }, { "Type": "noseRight", "X": 0.23328955471515656, "Y": 0.7759330868721008 }, { "Type": "mouthUp", "X": 0.22446128726005554, "Y": 0.7805567383766174 }, { "Type": "mouthDown", "X": 0.22087252140045166, "Y": 0.7891407608985901 } ], "MouthOpen": { "Confidence": 95.87068939208984, "Value": false }, "Mustache": { "Confidence": 99.9828109741211, "Value": false }, "Pose": { "Pitch": -0.9409101605415344, "Roll": 7.233824253082275, "Yaw": -2.3602254390716553 }, "Quality": { "Brightness": 32.01998519897461, "Sharpness": 93.67259216308594 }, "Smile": { "Confidence": 86.7142105102539, "Value": true }, "Sunglasses": { "Confidence": 97.38925170898438, "Value": false } } } ], "OrientationCorrection": "ROTATE_0" "UnindexedFaces": [] }