本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
辨識已储存影片中的名人
Amazon Rekognition Video 在已储存影片中辨識名人是一種非同步操作。若要辨識儲存視訊中的名人,請使StartCelebrityRecognition用開始視訊分析。Amazon Rekognition Video 向其發佈影片分析操作的物件偵測結果和完成狀態的 Amazon Simple Notification Service 主題。如果影片分析成功,請呼叫 GetCelebrityRecognition 以取得分析結果。如需開始視訊分析並取得結果的詳細資訊,請參閱 呼叫 Amazon Rekognition Video 操作。
此程序會展開 使用 Java 或 Python(SDK)分析存儲在 Amazon S3 存儲桶中的視頻 中的程式碼,該操作使用 Amazon SQS 佇列來取得影片分析要求的完成狀態。若要執行此程序,您需要含有一或多個名人臉部的影片檔案。
偵測存放在 Amazon S3 儲存貯體 (開發套件) 之影片中的名人
執行 使用 Java 或 Python(SDK)分析存儲在 Amazon S3 存儲桶中的視頻。
將下列程式碼新增至您在步驟 1 中建立的類別 VideoDetect
。
- Java
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
// Celebrities=====================================================================
private static void StartCelebrityDetection(String bucket, String video) throws Exception{
NotificationChannel channel= new NotificationChannel()
.withSNSTopicArn(snsTopicArn)
.withRoleArn(roleArn);
StartCelebrityRecognitionRequest req = new StartCelebrityRecognitionRequest()
.withVideo(new Video()
.withS3Object(new S3Object()
.withBucket(bucket)
.withName(video)))
.withNotificationChannel(channel);
StartCelebrityRecognitionResult startCelebrityRecognitionResult = rek.startCelebrityRecognition(req);
startJobId=startCelebrityRecognitionResult.getJobId();
}
private static void GetCelebrityDetectionResults() throws Exception{
int maxResults=10;
String paginationToken=null;
GetCelebrityRecognitionResult celebrityRecognitionResult=null;
do{
if (celebrityRecognitionResult !=null){
paginationToken = celebrityRecognitionResult.getNextToken();
}
celebrityRecognitionResult = rek.getCelebrityRecognition(new GetCelebrityRecognitionRequest()
.withJobId(startJobId)
.withNextToken(paginationToken)
.withSortBy(CelebrityRecognitionSortBy.TIMESTAMP)
.withMaxResults(maxResults));
System.out.println("File info for page");
VideoMetadata videoMetaData=celebrityRecognitionResult.getVideoMetadata();
System.out.println("Format: " + videoMetaData.getFormat());
System.out.println("Codec: " + videoMetaData.getCodec());
System.out.println("Duration: " + videoMetaData.getDurationMillis());
System.out.println("FrameRate: " + videoMetaData.getFrameRate());
System.out.println("Job");
System.out.println("Job status: " + celebrityRecognitionResult.getJobStatus());
//Show celebrities
List<CelebrityRecognition> celebs= celebrityRecognitionResult.getCelebrities();
for (CelebrityRecognition celeb: celebs) {
long seconds=celeb.getTimestamp()/1000;
System.out.print("Sec: " + Long.toString(seconds) + " ");
CelebrityDetail details=celeb.getCelebrity();
System.out.println("Name: " + details.getName());
System.out.println("Id: " + details.getId());
System.out.println();
}
} while (celebrityRecognitionResult !=null && celebrityRecognitionResult.getNextToken() != null);
}
在函數 main
中,將下行:
StartLabelDetection(bucket, video);
if (GetSQSMessageSuccess()==true)
GetLabelDetectionResults();
取代為:
StartCelebrityDetection(bucket, video);
if (GetSQSMessageSuccess()==true)
GetCelebrityDetectionResults();
- Java V2
-
此代碼取自AWS文檔 SDK 示例 GitHub 存儲庫。請參閱此處的完整範例。
//snippet-start:[rekognition.java2.recognize_video_celebrity.import]
import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rekognition.RekognitionClient;
import software.amazon.awssdk.services.rekognition.model.S3Object;
import software.amazon.awssdk.services.rekognition.model.NotificationChannel;
import software.amazon.awssdk.services.rekognition.model.Video;
import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionResponse;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;
import software.amazon.awssdk.services.rekognition.model.CelebrityRecognitionSortBy;
import software.amazon.awssdk.services.rekognition.model.VideoMetadata;
import software.amazon.awssdk.services.rekognition.model.CelebrityRecognition;
import software.amazon.awssdk.services.rekognition.model.CelebrityDetail;
import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionRequest;
import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionRequest;
import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionResponse;
import java.util.List;
//snippet-end:[rekognition.java2.recognize_video_celebrity.import]
/**
* To run this code example, ensure that you perform the Prerequisites as stated in the Amazon Rekognition Guide:
* https://docs.aws.amazon.com/rekognition/latest/dg/video-analyzing-with-sqs.html
*
* Also, ensure that set up your development environment, including your credentials.
*
* For information, see this documentation topic:
*
* https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
*/
public class RecognizeCelebritiesVideo {
private static String startJobId ="";
public static void main(String[] args) {
final String usage = "\n" +
"Usage: " +
" <bucket> <video> <topicArn> <roleArn>\n\n" +
"Where:\n" +
" bucket - The name of the bucket in which the video is located (for example, (for example, myBucket). \n\n"+
" video - The name of video (for example, people.mp4). \n\n" +
" topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic. \n\n" +
" roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use. \n\n" ;
if (args.length != 4) {
System.out.println(usage);
System.exit(1);
}
String bucket = args[0];
String video = args[1];
String topicArn = args[2];
String roleArn = args[3];
Region region = Region.US_EAST_1;
RekognitionClient rekClient = RekognitionClient.builder()
.region(region)
.credentialsProvider(ProfileCredentialsProvider.create("profile-name"))
.build();
NotificationChannel channel = NotificationChannel.builder()
.snsTopicArn(topicArn)
.roleArn(roleArn)
.build();
StartCelebrityDetection(rekClient, channel, bucket, video);
GetCelebrityDetectionResults(rekClient);
System.out.println("This example is done!");
rekClient.close();
}
// snippet-start:[rekognition.java2.recognize_video_celebrity.main]
public static void StartCelebrityDetection(RekognitionClient rekClient,
NotificationChannel channel,
String bucket,
String video){
try {
S3Object s3Obj = S3Object.builder()
.bucket(bucket)
.name(video)
.build();
Video vidOb = Video.builder()
.s3Object(s3Obj)
.build();
StartCelebrityRecognitionRequest recognitionRequest = StartCelebrityRecognitionRequest.builder()
.jobTag("Celebrities")
.notificationChannel(channel)
.video(vidOb)
.build();
StartCelebrityRecognitionResponse startCelebrityRecognitionResult = rekClient.startCelebrityRecognition(recognitionRequest);
startJobId = startCelebrityRecognitionResult.jobId();
} catch(RekognitionException e) {
System.out.println(e.getMessage());
System.exit(1);
}
}
public static void GetCelebrityDetectionResults(RekognitionClient rekClient) {
try {
String paginationToken=null;
GetCelebrityRecognitionResponse recognitionResponse = null;
boolean finished = false;
String status;
int yy=0 ;
do{
if (recognitionResponse !=null)
paginationToken = recognitionResponse.nextToken();
GetCelebrityRecognitionRequest recognitionRequest = GetCelebrityRecognitionRequest.builder()
.jobId(startJobId)
.nextToken(paginationToken)
.sortBy(CelebrityRecognitionSortBy.TIMESTAMP)
.maxResults(10)
.build();
// Wait until the job succeeds
while (!finished) {
recognitionResponse = rekClient.getCelebrityRecognition(recognitionRequest);
status = recognitionResponse.jobStatusAsString();
if (status.compareTo("SUCCEEDED") == 0)
finished = true;
else {
System.out.println(yy + " status is: " + status);
Thread.sleep(1000);
}
yy++;
}
finished = false;
// Proceed when the job is done - otherwise VideoMetadata is null.
VideoMetadata videoMetaData=recognitionResponse.videoMetadata();
System.out.println("Format: " + videoMetaData.format());
System.out.println("Codec: " + videoMetaData.codec());
System.out.println("Duration: " + videoMetaData.durationMillis());
System.out.println("FrameRate: " + videoMetaData.frameRate());
System.out.println("Job");
List<CelebrityRecognition> celebs= recognitionResponse.celebrities();
for (CelebrityRecognition celeb: celebs) {
long seconds=celeb.timestamp()/1000;
System.out.print("Sec: " + seconds + " ");
CelebrityDetail details=celeb.celebrity();
System.out.println("Name: " + details.name());
System.out.println("Id: " + details.id());
System.out.println();
}
} while (recognitionResponse.nextToken() != null);
} catch(RekognitionException | InterruptedException e) {
System.out.println(e.getMessage());
System.exit(1);
}
}
// snippet-end:[rekognition.java2.recognize_video_celebrity.main]
}
- Python
#Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
# ============== Celebrities ===============
def StartCelebrityDetection(self):
response=self.rek.start_celebrity_recognition(Video={'S3Object': {'Bucket': self.bucket, 'Name': self.video}},
NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn})
self.startJobId=response['JobId']
print('Start Job Id: ' + self.startJobId)
def GetCelebrityDetectionResults(self):
maxResults = 10
paginationToken = ''
finished = False
while finished == False:
response = self.rek.get_celebrity_recognition(JobId=self.startJobId,
MaxResults=maxResults,
NextToken=paginationToken)
print(response['VideoMetadata']['Codec'])
print(str(response['VideoMetadata']['DurationMillis']))
print(response['VideoMetadata']['Format'])
print(response['VideoMetadata']['FrameRate'])
for celebrityRecognition in response['Celebrities']:
print('Celebrity: ' +
str(celebrityRecognition['Celebrity']['Name']))
print('Timestamp: ' + str(celebrityRecognition['Timestamp']))
print()
if 'NextToken' in response:
paginationToken = response['NextToken']
else:
finished = True
在函數 main
中,將下行:
analyzer.StartLabelDetection()
if analyzer.GetSQSMessageSuccess()==True:
analyzer.GetLabelDetectionResults()
取代為:
analyzer.StartCelebrityDetection()
if analyzer.GetSQSMessageSuccess()==True:
analyzer.GetCelebrityDetectionResults()
- Node.JS
-
在下列 Node.Js 程式碼範例中,將 bucket
的值取代為包含您視訊的 S3 儲存貯體的名稱,並以視訊檔案的名稱取代 videoName
的值。您也需要將 roleArn
的值取代為與 IAM 服務角色相關聯的 Arn。最後,將 region
的值替換為與您帳戶關聯的操作區域的名稱。將建立 Rekognition 工作階段的行中 profile_name
的值取代為您開發人員設定檔的名稱。
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
// Import required AWS SDK clients and commands for Node.js
import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand,
SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand, DeleteMessageCommand } from "@aws-sdk/client-sqs";
import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-sdk/client-sns";
import { SQSClient } from "@aws-sdk/client-sqs";
import { SNSClient } from "@aws-sdk/client-sns";
import { RekognitionClient, StartLabelDetectionCommand, GetLabelDetectionCommand,
StartCelebrityRecognitionCommand, GetCelebrityRecognitionCommand} from "@aws-sdk/client-rekognition";
import { stdout } from "process";
import {fromIni} from '@aws-sdk/credential-providers';
// Set the AWS Region.
const REGION = "region-name"; //e.g. "us-east-1"
// Set the profile name
const profileName = "profile-name"
// Name the collection
// Create SNS service object.
const sqsClient = new SQSClient({ region: REGION,
credentials: fromIni({profile: profileName,}), });
const snsClient = new SNSClient({ region: REGION,
credentials: fromIni({profile: profileName,}), });
const rekClient = new RekognitionClient({region: REGION,
credentials: fromIni({profile: profileName,}),
});
// Set bucket and video variables
const bucket = "bucket-name";
const videoName = "video-name";
const roleArn = "role-arn"
var startJobId = ""
var ts = Date.now();
const snsTopicName = "AmazonRekognitionExample" + ts;
const snsTopicParams = {Name: snsTopicName}
const sqsQueueName = "AmazonRekognitionQueue-" + ts;
// Set the parameters
const sqsParams = {
QueueName: sqsQueueName, //SQS_QUEUE_URL
Attributes: {
DelaySeconds: "60", // Number of seconds delay.
MessageRetentionPeriod: "86400", // Number of seconds delay.
},
};
const createTopicandQueue = async () => {
try {
// Create SNS topic
const topicResponse = await snsClient.send(new CreateTopicCommand(snsTopicParams));
const topicArn = topicResponse.TopicArn
console.log("Success", topicResponse);
// Create SQS Queue
const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams));
console.log("Success", sqsResponse);
const sqsQueueCommand = await sqsClient.send(new GetQueueUrlCommand({QueueName: sqsQueueName}))
const sqsQueueUrl = sqsQueueCommand.QueueUrl
const attribsResponse = await sqsClient.send(new GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']}))
const attribs = attribsResponse.Attributes
console.log(attribs)
const queueArn = attribs.QueueArn
// subscribe SQS queue to SNS topic
const subscribed = await snsClient.send(new SubscribeCommand({TopicArn: topicArn, Protocol:'sqs', Endpoint: queueArn}))
const policy = {
Version: "2012-10-17",
Statement: [
{
Sid: "MyPolicy",
Effect: "Allow",
Principal: {AWS: "*"},
Action: "SQS:SendMessage",
Resource: queueArn,
Condition: {
ArnEquals: {
'aws:SourceArn': topicArn
}
}
}
]
};
const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl: sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}}))
console.log(response)
console.log(sqsQueueUrl, topicArn)
return [sqsQueueUrl, topicArn]
} catch (err) {
console.log("Error", err);
}
};
const startCelebrityDetection = async(roleArn, snsTopicArn) =>{
try {
//Initiate label detection and update value of startJobId with returned Job ID
const response = await rekClient.send(new StartCelebrityRecognitionCommand({Video:{S3Object:{Bucket:bucket, Name:videoName}},
NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}}))
startJobId = response.JobId
console.log(`Start Job ID: ${startJobId}`)
return startJobId
} catch (err) {
console.log("Error", err);
}
};
const getCelebrityRecognitionResults = async(startJobId) =>{
try {
//Initiate label detection and update value of startJobId with returned Job ID
var maxResults = 10
var paginationToken = ''
var finished = false
while (finished == false){
var response = await rekClient.send(new GetCelebrityRecognitionCommand({JobId: startJobId, MaxResults: maxResults,
NextToken: paginationToken}))
console.log(response.VideoMetadata.Codec)
console.log(response.VideoMetadata.DurationMillis)
console.log(response.VideoMetadata.Format)
console.log(response.VideoMetadata.FrameRate)
response.Celebrities.forEach(celebrityRecognition => {
console.log(`Celebrity: ${celebrityRecognition.Celebrity.Name}`)
console.log(`Timestamp: ${celebrityRecognition.Timestamp}`)
console.log()
})
// Searh for pagination token, if found, set variable to next token
if (String(response).includes("NextToken")){
paginationToken = response.NextToken
}else{
finished = true
}
}
} catch (err) {
console.log("Error", err);
}
};
// Checks for status of job completion
const getSQSMessageSuccess = async(sqsQueueUrl, startJobId) => {
try {
// Set job found and success status to false initially
var jobFound = false
var succeeded = false
var dotLine = 0
// while not found, continue to poll for response
while (jobFound == false){
var sqsReceivedResponse = await sqsClient.send(new ReceiveMessageCommand({QueueUrl:sqsQueueUrl,
MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10}));
if (sqsReceivedResponse){
var responseString = JSON.stringify(sqsReceivedResponse)
if (!responseString.includes('Body')){
if (dotLine < 40) {
console.log('.')
dotLine = dotLine + 1
}else {
console.log('')
dotLine = 0
};
stdout.write('', () => {
console.log('');
});
await new Promise(resolve => setTimeout(resolve, 5000));
continue
}
}
// Once job found, log Job ID and return true if status is succeeded
for (var message of sqsReceivedResponse.Messages){
console.log("Retrieved messages:")
var notification = JSON.parse(message.Body)
var rekMessage = JSON.parse(notification.Message)
var messageJobId = rekMessage.JobId
if (String(rekMessage.JobId).includes(String(startJobId))){
console.log('Matching job found:')
console.log(rekMessage.JobId)
jobFound = true
console.log(rekMessage.Status)
if (String(rekMessage.Status).includes(String("SUCCEEDED"))){
succeeded = true
console.log("Job processing succeeded.")
var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle}));
}
}else{
console.log("Provided Job ID did not match returned ID.")
var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle}));
}
}
}
return succeeded
} catch(err) {
console.log("Error", err);
}
};
// Start label detection job, sent status notification, check for success status
// Retrieve results if status is "SUCEEDED", delete notification queue and topic
const runCelebRecognitionAndGetResults = async () => {
try {
const sqsAndTopic = await createTopicandQueue();
//const startLabelDetectionRes = await startLabelDetection(roleArn, sqsAndTopic[1]);
//const getSQSMessageStatus = await getSQSMessageSuccess(sqsAndTopic[0], startLabelDetectionRes)
const startCelebrityDetectionRes = await startCelebrityDetection(roleArn, sqsAndTopic[1]);
const getSQSMessageStatus = await getSQSMessageSuccess(sqsAndTopic[0], startCelebrityDetectionRes)
console.log(getSQSMessageSuccess)
if (getSQSMessageSuccess){
console.log("Retrieving results:")
const results = await getCelebrityRecognitionResults(startCelebrityDetectionRes)
}
const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl: sqsAndTopic[0]}));
const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn: sqsAndTopic[1]}));
console.log("Successfully deleted.")
} catch (err) {
console.log("Error", err);
}
};
runCelebRecognitionAndGetResults()
- CLI
-
執行以下 AWS CLI 命令來開始偵測影片中的標籤。
aws rekognition start-celebrity-recognition --video "{"S3Object":{"Bucket":"bucket-name","Name":"video-name"}}" \
--notification-channel "{"SNSTopicArn":"topic-arn","RoleArn":"role-arn"}" \
--region region-name --profile profile-name
更新下列的值:
如果您在 Windows 裝置上存取 CLI,請使用雙引號而非單引號,並以反斜線 (即\) 替代內部雙引號,以解決您可能遇到的任何剖析器錯誤。如需範例,請參閱下列內容:
aws rekognition start-celebrity-recognition --video "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"video-name\"}}" \
--notification-channel "{\"SNSTopicArn\":\"topic-arn\",\"RoleArn\":\"role-arn\"}" \
--region region-name --profile profile-name
執行正在進行的程式碼範例之後,複製傳回的程式碼 jobID
,並將其提供給下列 GetCelebrityRecognition
命令,以 job-id-number
取代您之前收到的 jobID
結果:
aws rekognition get-celebrity-recognition --job-id job-id-number --profile profile-name
執行程式碼。在影片中辨識出之名人的資訊便會顯示。
GetCelebrityRecognition 作業回應
以下是 JSON 回應的範例。回應包含下列內容:
-
已辨識的名人:Celebrities
是影片中已辨識之名人的陣列與辨識時間。每當在影片中辨識出該名人時,就會有一個 CelebrityRecognition 物件。每個 CelebrityRecognition
包含經識別名人的資訊 (CelebrityDetail) 和名人在影片中識別的時間 (Timestamp
)。會在影片開頭量測 Timestamp
(單位:毫秒)。
-
CelebrityDetail— 包含有關公認名人的信息。其包括名人姓名 (Name
)、識別符 (ID
)、名人的已知性別 (KnownGender
) 與指向相關內容的 URL 清單 (Urls
)。它還包括 Amazon Rekognition Video 在識別準確性方面具有的信心水平,以及有關名人臉部的詳細信息。FaceDetail如果您之後需要取得相關內容,可以搭配 getCelebrityInfo 使用 ID
。
-
VideoMetadata— 已分析視訊的相關資訊。
{
"Celebrities": [
{
"Celebrity": {
"Confidence": 0.699999988079071,
"Face": {
"BoundingBox": {
"Height": 0.20555555820465088,
"Left": 0.029374999925494194,
"Top": 0.22333332896232605,
"Width": 0.11562500149011612
},
"Confidence": 99.89837646484375,
"Landmarks": [
{
"Type": "eyeLeft",
"X": 0.06857934594154358,
"Y": 0.30842265486717224
},
{
"Type": "eyeRight",
"X": 0.10396526008844376,
"Y": 0.300625205039978
},
{
"Type": "nose",
"X": 0.0966852456331253,
"Y": 0.34081998467445374
},
{
"Type": "mouthLeft",
"X": 0.075217105448246,
"Y": 0.3811396062374115
},
{
"Type": "mouthRight",
"X": 0.10744428634643555,
"Y": 0.37407416105270386
}
],
"Pose": {
"Pitch": -0.9784082174301147,
"Roll": -8.808176040649414,
"Yaw": 20.28228759765625
},
"Quality": {
"Brightness": 43.312068939208984,
"Sharpness": 99.9305191040039
}
},
"Id": "XXXXXX",
"KnownGender": {
"Type": "Female"
},
"Name": "Celeb A",
"Urls": []
},
"Timestamp": 367
},......
],
"JobStatus": "SUCCEEDED",
"NextToken": "XfXnZKiyMOGDhzBzYUhS5puM+g1IgezqFeYpv/H/+5noP/LmM57FitUAwSQ5D6G4AB/PNwolrw==",
"VideoMetadata": {
"Codec": "h264",
"DurationMillis": 67301,
"FileExtension": "mp4",
"Format": "QuickTime / MOV",
"FrameHeight": 1080,
"FrameRate": 29.970029830932617,
"FrameWidth": 1920
}
}