本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
偵測映像中的個人防護裝備
若要偵測影像中人員的個人防護裝備 (PPE),請使用DetectProtectiveEquipment非儲存API作業。
您可以使用或 () 將輸入影像提供為影像位元組陣列 (base64 編碼的影像位元組 AWS Command Line Interface ) AWS SDK AWS CLI或 Amazon S3 物件。這些範例使用存放在 Amazon S3 儲存貯體中的映像。如需詳細資訊,請參閱使用映像。
偵測PPE影像中的人物
如果您尚未執行:
建立或更新具有
AmazonRekognitionFullAccess
和AmazonS3ReadOnlyAccess
許可的使用者。如需詳細資訊,請參閱步驟 1:設定AWS帳戶並建立使用者。安裝並設定 AWS CLI 和 AWS SDKs. 如需詳細資訊,請參閱步驟 2:設定 AWS CLI 以及 AWS SDKs。
-
將圖像(包含一個或多個穿著的人PPE)上傳到您的 S3 存儲桶。
如需指示說明,請參閱《Amazon Simple Storage Service 使用者指南》中的上傳物件至 Amazon S3。
使用下列範例來呼叫
DetectProtectiveEquipment
操作。如需有關在映像中顯示邊界邊框的資訊,請參閱 顯示週框方塊。- Java
-
此範例顯示在影像中偵測到的人員上偵測到的PPE項目的相關資訊。
將
bucket
的值變更為包含映像檔案的 Amazon S3 儲存貯體名稱。變更映像檔案名稱的photo
值。//Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package com.amazonaws.samples; import com.amazonaws.client.builder.AwsClientBuilder; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.AmazonRekognitionException; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.ProtectiveEquipmentBodyPart; import com.amazonaws.services.rekognition.model.S3Object; import com.amazonaws.services.rekognition.model.ProtectiveEquipmentPerson; import com.amazonaws.services.rekognition.model.ProtectiveEquipmentSummarizationAttributes; import java.util.List; import com.amazonaws.services.rekognition.model.BoundingBox; import com.amazonaws.services.rekognition.model.DetectProtectiveEquipmentRequest; import com.amazonaws.services.rekognition.model.DetectProtectiveEquipmentResult; import com.amazonaws.services.rekognition.model.EquipmentDetection; public class DetectPPE { public static void main(String[] args) throws Exception { String photo = "photo"; String bucket = "bucket"; AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); ProtectiveEquipmentSummarizationAttributes summaryAttributes = new ProtectiveEquipmentSummarizationAttributes() .withMinConfidence(80F) .withRequiredEquipmentTypes("FACE_COVER", "HAND_COVER", "HEAD_COVER"); DetectProtectiveEquipmentRequest request = new DetectProtectiveEquipmentRequest() .withImage(new Image() .withS3Object(new S3Object() .withName(photo).withBucket(bucket))) .withSummarizationAttributes(summaryAttributes); try { System.out.println("Detected PPE for people in image " + photo); System.out.println("Detected people\n---------------"); DetectProtectiveEquipmentResult result = rekognitionClient.detectProtectiveEquipment(request); List <ProtectiveEquipmentPerson> persons = result.getPersons(); for (ProtectiveEquipmentPerson person: persons) { System.out.println("ID: " + person.getId()); List<ProtectiveEquipmentBodyPart> bodyParts=person.getBodyParts(); if (bodyParts.isEmpty()){ System.out.println("\tNo body parts detected"); } else for (ProtectiveEquipmentBodyPart bodyPart: bodyParts) { System.out.println("\t" + bodyPart.getName() + ". Confidence: " + bodyPart.getConfidence().toString()); List<EquipmentDetection> equipmentDetections=bodyPart.getEquipmentDetections(); if (equipmentDetections.isEmpty()){ System.out.println("\t\tNo PPE Detected on " + bodyPart.getName()); } else { for (EquipmentDetection item: equipmentDetections) { System.out.println("\t\tItem: " + item.getType() + ". Confidence: " + item.getConfidence().toString()); System.out.println("\t\tCovers body part: " + item.getCoversBodyPart().getValue().toString() + ". Confidence: " + item.getCoversBodyPart().getConfidence().toString()); System.out.println("\t\tBounding Box"); BoundingBox box =item.getBoundingBox(); System.out.println("\t\tLeft: " +box.getLeft().toString()); System.out.println("\t\tTop: " + box.getTop().toString()); System.out.println("\t\tWidth: " + box.getWidth().toString()); System.out.println("\t\tHeight: " + box.getHeight().toString()); System.out.println("\t\tConfidence: " + item.getConfidence().toString()); System.out.println(); } } } } System.out.println("Person ID Summary\n-----------------"); //List<Integer> list=; DisplaySummary("With required equipment", result.getSummary().getPersonsWithRequiredEquipment()); DisplaySummary("Without required equipment", result.getSummary().getPersonsWithoutRequiredEquipment()); DisplaySummary("Indeterminate", result.getSummary().getPersonsIndeterminate()); } catch(AmazonRekognitionException e) { e.printStackTrace(); } } static void DisplaySummary(String summaryType,List<Integer> idList) { System.out.print(summaryType + "\n\tIDs "); if (idList.size()==0) { System.out.println("None"); } else { int count=0; for (Integer id: idList ) { if (count++ == idList.size()-1) { System.out.println(id.toString()); } else { System.out.print(id.toString() + ", "); } } } System.out.println(); } }
- Java V2
-
此代碼取自 AWS 文檔SDK示例 GitHub 存儲庫。請參閱此處
的完整範例。 //snippet-start:[rekognition.java2.detect_ppe.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.core.ResponseBytes; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.BoundingBox; import software.amazon.awssdk.services.rekognition.model.DetectProtectiveEquipmentRequest; import software.amazon.awssdk.services.rekognition.model.DetectProtectiveEquipmentResponse; import software.amazon.awssdk.services.rekognition.model.EquipmentDetection; import software.amazon.awssdk.services.rekognition.model.ProtectiveEquipmentBodyPart; import software.amazon.awssdk.services.rekognition.model.ProtectiveEquipmentSummarizationAttributes; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.s3.S3Client; import software.amazon.awssdk.services.s3.model.GetObjectRequest; import software.amazon.awssdk.services.s3.model.GetObjectResponse; import software.amazon.awssdk.services.s3.model.S3Exception; import software.amazon.awssdk.services.rekognition.model.ProtectiveEquipmentPerson; import java.io.ByteArrayInputStream; import java.io.InputStream; import java.util.List; //snippet-end:[rekognition.java2.detect_ppe.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectPPE { public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <sourceImage> <bucketName>\n\n" + "Where:\n" + " sourceImage - The name of the image in an Amazon S3 bucket (for example, people.png). \n\n" + " bucketName - The name of the Amazon S3 bucket (for example, myBucket). \n\n"; if (args.length != 2) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; String bucketName = args[1]; Region region = Region.US_WEST_2; S3Client s3 = S3Client.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); displayGear(s3, rekClient, sourceImage, bucketName) ; s3.close(); rekClient.close(); System.out.println("This example is done!"); } // snippet-start:[rekognition.java2.detect_ppe.main] public static void displayGear(S3Client s3, RekognitionClient rekClient, String sourceImage, String bucketName) { byte[] data = getObjectBytes (s3, bucketName, sourceImage); InputStream is = new ByteArrayInputStream(data); try { ProtectiveEquipmentSummarizationAttributes summarizationAttributes = ProtectiveEquipmentSummarizationAttributes.builder() .minConfidence(80F) .requiredEquipmentTypesWithStrings("FACE_COVER", "HAND_COVER", "HEAD_COVER") .build(); SdkBytes sourceBytes = SdkBytes.fromInputStream(is); software.amazon.awssdk.services.rekognition.model.Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectProtectiveEquipmentRequest request = DetectProtectiveEquipmentRequest.builder() .image(souImage) .summarizationAttributes(summarizationAttributes) .build(); DetectProtectiveEquipmentResponse result = rekClient.detectProtectiveEquipment(request); List<ProtectiveEquipmentPerson> persons = result.persons(); for (ProtectiveEquipmentPerson person: persons) { System.out.println("ID: " + person.id()); List<ProtectiveEquipmentBodyPart> bodyParts=person.bodyParts(); if (bodyParts.isEmpty()){ System.out.println("\tNo body parts detected"); } else for (ProtectiveEquipmentBodyPart bodyPart: bodyParts) { System.out.println("\t" + bodyPart.name() + ". Confidence: " + bodyPart.confidence().toString()); List<EquipmentDetection> equipmentDetections=bodyPart.equipmentDetections(); if (equipmentDetections.isEmpty()){ System.out.println("\t\tNo PPE Detected on " + bodyPart.name()); } else { for (EquipmentDetection item: equipmentDetections) { System.out.println("\t\tItem: " + item.type() + ". Confidence: " + item.confidence().toString()); System.out.println("\t\tCovers body part: " + item.coversBodyPart().value().toString() + ". Confidence: " + item.coversBodyPart().confidence().toString()); System.out.println("\t\tBounding Box"); BoundingBox box =item.boundingBox(); System.out.println("\t\tLeft: " +box.left().toString()); System.out.println("\t\tTop: " + box.top().toString()); System.out.println("\t\tWidth: " + box.width().toString()); System.out.println("\t\tHeight: " + box.height().toString()); System.out.println("\t\tConfidence: " + item.confidence().toString()); System.out.println(); } } } } System.out.println("Person ID Summary\n-----------------"); displaySummary("With required equipment", result.summary().personsWithRequiredEquipment()); displaySummary("Without required equipment", result.summary().personsWithoutRequiredEquipment()); displaySummary("Indeterminate", result.summary().personsIndeterminate()); } catch (RekognitionException e) { e.printStackTrace(); System.exit(1); } } public static byte[] getObjectBytes (S3Client s3, String bucketName, String keyName) { try { GetObjectRequest objectRequest = GetObjectRequest .builder() .key(keyName) .bucket(bucketName) .build(); ResponseBytes<GetObjectResponse> objectBytes = s3.getObjectAsBytes(objectRequest); return objectBytes.asByteArray(); } catch (S3Exception e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } return null; } static void displaySummary(String summaryType,List<Integer> idList) { System.out.print(summaryType + "\n\tIDs "); if (idList.size()==0) { System.out.println("None"); } else { int count=0; for (Integer id: idList ) { if (count++ == idList.size()-1) { System.out.println(id.toString()); } else { System.out.print(id.toString() + ", "); } } } System.out.println(); } // snippet-end:[rekognition.java2.detect_ppe.main] }
- AWS CLI
-
此 AWS CLI 命令請求PPE摘要並顯示
detect-protective-equipment
CLI操作的JSON輸出。將
bucketname
變更為 Amazon S3 儲存貯體的名稱,其中包含映像。將input.jpg
變更為您要使用的映像名稱。aws rekognition detect-protective-equipment \ --image "S3Object={Bucket=
bucketname
,Name=input.jpg
}" \ --summarization-attributes "MinConfidence=80,RequiredEquipmentTypes=['FACE_COVER','HAND_COVER','HEAD_COVER']"此 AWS CLI 指令會顯示
detect-protective-equipment
CLI作業的JSON輸出。將
bucketname
變更為 Amazon S3 儲存貯體的名稱,其中包含映像。將input.jpg
變更為您要使用的映像名稱。aws rekognition detect-protective-equipment \ --image "S3Object={Bucket=
bucketname
,Name=input.jpg
}" - Python
-
此範例顯示在影像中偵測到的人員上偵測到的PPE項目的相關資訊。
將
bucket
的值變更為包含映像檔案的 Amazon S3 儲存貯體名稱。變更映像檔案名稱的photo
值。將建立 Rekognition 工作階段的行中profile_name
值取代為您開發人員設定檔的名稱。# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) import boto3 def detect_ppe(photo, bucket): session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') response = client.detect_protective_equipment(Image={'S3Object': {'Bucket': bucket, 'Name': photo}}, SummarizationAttributes={'MinConfidence': 80, 'RequiredEquipmentTypes': ['FACE_COVER', 'HAND_COVER', 'HEAD_COVER']}) print('Detected PPE for people in image ' + photo) print('\nDetected people\n---------------') for person in response['Persons']: print('Person ID: ' + str(person['Id'])) print('Body Parts\n----------') body_parts = person['BodyParts'] if len(body_parts) == 0: print('No body parts found') else: for body_part in body_parts: print('\t' + body_part['Name'] + '\n\t\tConfidence: ' + str(body_part['Confidence'])) print('\n\t\tDetected PPE\n\t\t------------') ppe_items = body_part['EquipmentDetections'] if len(ppe_items) == 0: print('\t\tNo PPE detected on ' + body_part['Name']) else: for ppe_item in ppe_items: print('\t\t' + ppe_item['Type'] + '\n\t\t\tConfidence: ' + str(ppe_item['Confidence'])) print('\t\tCovers body part: ' + str( ppe_item['CoversBodyPart']['Value']) + '\n\t\t\tConfidence: ' + str( ppe_item['CoversBodyPart']['Confidence'])) print('\t\tBounding Box:') print('\t\t\tTop: ' + str(ppe_item['BoundingBox']['Top'])) print('\t\t\tLeft: ' + str(ppe_item['BoundingBox']['Left'])) print('\t\t\tWidth: ' + str(ppe_item['BoundingBox']['Width'])) print('\t\t\tHeight: ' + str(ppe_item['BoundingBox']['Height'])) print('\t\t\tConfidence: ' + str(ppe_item['Confidence'])) print() print() print('Person ID Summary\n----------------') display_summary('With required equipment', response['Summary']['PersonsWithRequiredEquipment']) display_summary('Without required equipment', response['Summary']['PersonsWithoutRequiredEquipment']) display_summary('Indeterminate', response['Summary']['PersonsIndeterminate']) print() return len(response['Persons']) # Display summary information for supplied summary. def display_summary(summary_type, summary): print(summary_type + '\n\tIDs: ', end='') if (len(summary) == 0): print('None') else: for num, id in enumerate(summary, start=0): if num == len(summary) - 1: print(id) else: print(str(id) + ', ', end='') def main(): photo = 'photo-name' bucket = 'bucket-name' person_count = detect_ppe(photo, bucket) print("Persons detected: " + str(person_count)) if __name__ == "__main__": main()