AWS SDK for JavaScript V3 API參考指南詳細描述 AWS SDK for JavaScript 第 3 版 (V3) 的所有API操作。
本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
適用於 JavaScript (v3) SDK 的 Amazon Bedrock 執行期範例
下列程式碼範例示範如何使用 AWS SDK for JavaScript (v3) 搭配 Amazon Bedrock Runtime 來執行動作和實作常見案例。
案例是程式碼範例,示範如何透過呼叫服務內的多個函數或與其他 結合來完成特定任務 AWS 服務。
每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。
開始使用
下列程式碼範例說明如何開始使用 Amazon Bedrock。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 /** * @typedef {Object} Content * @property {string} text * * @typedef {Object} Usage * @property {number} input_tokens * @property {number} output_tokens * * @typedef {Object} ResponseBody * @property {Content[]} content * @property {Usage} usage */ import { fileURLToPath } from "node:url"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; const AWS_REGION = "us-east-1"; const MODEL_ID = "anthropic.claude-3-haiku-20240307-v1:0"; const PROMPT = "Hi. In a short paragraph, explain what you can do."; const hello = async () => { console.log("=".repeat(35)); console.log("Welcome to the Amazon Bedrock demo!"); console.log("=".repeat(35)); console.log("Model: Anthropic Claude 3 Haiku"); console.log(`Prompt: ${PROMPT}\n`); console.log("Invoking model...\n"); // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: AWS_REGION }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [{ role: "user", content: [{ type: "text", text: PROMPT }] }], }; // Invoke Claude with the payload and wait for the response. const apiResponse = await client.send( new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId: MODEL_ID, }), ); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); const responses = responseBody.content; if (responses.length === 1) { console.log(`Response: ${responses[0].text}`); } else { console.log("Haiku returned multiple responses:"); console.log(responses); } console.log(`\nNumber of input tokens: ${responseBody.usage.input_tokens}`); console.log(`Number of output tokens: ${responseBody.usage.output_tokens}`); }; if (process.argv[1] === fileURLToPath(import.meta.url)) { await hello(); }
-
如需API詳細資訊,請參閱 參考 InvokeModel中的 。 AWS SDK for JavaScript API
-
案例
下列程式碼範例示範如何準備並傳送提示至 Amazon Bedrock 上的各種大型語言模型 (LLMs)
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 import { fileURLToPath } from "node:url"; import { Scenario, ScenarioAction, ScenarioInput, ScenarioOutput, } from "@aws-doc-sdk-examples/lib/scenario/index.js"; import { FoundationModels } from "../config/foundation_models.js"; /** * @typedef {Object} ModelConfig * @property {Function} module * @property {Function} invoker * @property {string} modelId * @property {string} modelName */ const greeting = new ScenarioOutput( "greeting", "Welcome to the Amazon Bedrock Runtime client demo!", { header: true }, ); const selectModel = new ScenarioInput("model", "First, select a model:", { type: "select", choices: Object.values(FoundationModels).map((model) => ({ name: model.modelName, value: model, })), }); const enterPrompt = new ScenarioInput("prompt", "Now, enter your prompt:", { type: "input", }); const printDetails = new ScenarioOutput( "print details", /** * @param {{ model: ModelConfig, prompt: string }} c */ (c) => console.log(`Invoking ${c.model.modelName} with '${c.prompt}'...`), ); const invokeModel = new ScenarioAction( "invoke model", /** * @param {{ model: ModelConfig, prompt: string, response: string }} c */ async (c) => { const modelModule = await c.model.module(); const invoker = c.model.invoker(modelModule); c.response = await invoker(c.prompt, c.model.modelId); }, ); const printResponse = new ScenarioOutput( "print response", /** * @param {{ response: string }} c */ (c) => c.response, ); const scenario = new Scenario("Amazon Bedrock Runtime Demo", [ greeting, selectModel, enterPrompt, printDetails, invokeModel, printResponse, ]); if (process.argv[1] === fileURLToPath(import.meta.url)) { scenario.run(); }
-
如需API詳細資訊,請參閱AWS SDK for JavaScript API參考 中的下列主題。
-
AI21 實驗室 Jurassic-2
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 AI21 Labs Jurassic-2API。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 AI21 Labs Jurassic-2API。
// Use the Conversation API to send a text message to AI21 Labs Jurassic-2. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Jurassic-2 Mid. const modelId = "ai21.j2-mid-v1"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱AWS SDK for JavaScript API參考 中的 Converse。
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 AI21 Labs Jurassic-2API。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息。
import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} Data * @property {string} text * * @typedef {Object} Completion * @property {Data} data * * @typedef {Object} ResponseBody * @property {Completion[]} completions */ /** * Invokes an AI21 Labs Jurassic-2 model. * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "ai21.j2-mid-v1". */ export const invokeModel = async (prompt, modelId = "ai21.j2-mid-v1") => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { prompt, maxTokens: 500, temperature: 0.5, }; // Invoke the model with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response(s). const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.completions[0].data.text; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Complete the following in one sentence: "Once upon a time..."'; const modelId = FoundationModels.JURASSIC2_MID.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(response); } catch (err) { console.log(err); } }
-
如需API詳細資訊,請參閱 參考 InvokeModel中的 。 AWS SDK for JavaScript API
-
Amazon Titan Text
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan TextAPI。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan TextAPI。
// Use the Conversation API to send a text message to Amazon Titan Text. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Titan Text Premier. const modelId = "amazon.titan-text-premier-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱AWS SDK for JavaScript API參考 中的 Converse。
-
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan Text,API並即時處理回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan Text,API並即時處理回應串流。
// Use the Conversation API to send a text message to Amazon Titan Text. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Titan Text Premier. const modelId = "amazon.titan-text-premier-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱 參考 ConverseStream中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Amazon Titan TextAPI。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息。
import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} ResponseBody * @property {Object[]} results */ /** * Invokes an Amazon Titan Text generation model. * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "amazon.titan-text-express-v1". */ export const invokeModel = async ( prompt, modelId = "amazon.titan-text-express-v1", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { inputText: prompt, textGenerationConfig: { maxTokenCount: 4096, stopSequences: [], temperature: 0, topP: 1, }, }; // Invoke the model with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response. const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.results[0].outputText; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Complete the following in one sentence: "Once upon a time..."'; const modelId = FoundationModels.TITAN_TEXT_G1_EXPRESS.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(response); } catch (err) { console.log(err); } }
-
如需API詳細資訊,請參閱 參考 InvokeModel中的 。 AWS SDK for JavaScript API
-
Anthropic Claude
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic ClaudeAPI。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic ClaudeAPI。
// Use the Conversation API to send a text message to Anthropic Claude. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Claude 3 Haiku. const modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱AWS SDK for JavaScript API參考 中的 Converse。
-
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic Claude,API並即時處理回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic Claude,API並即時處理回應串流。
// Use the Conversation API to send a text message to Anthropic Claude. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Claude 3 Haiku. const modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱 參考 ConverseStream中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Anthropic ClaudeAPI。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息。
import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} ResponseContent * @property {string} text * * @typedef {Object} MessagesResponseBody * @property {ResponseContent[]} content * * @typedef {Object} Delta * @property {string} text * * @typedef {Object} Message * @property {string} role * * @typedef {Object} Chunk * @property {string} type * @property {Delta} delta * @property {Message} message */ /** * Invokes Anthropic Claude 3 using the Messages API. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModel = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {MessagesResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.content[0].text; }; /** * Invokes Anthropic Claude 3 and processes the response stream. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModelWithResponseStream = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the API to respond. const command = new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); let completeMessage = ""; // Decode and process the response stream for await (const item of apiResponse.body) { /** @type Chunk */ const chunk = JSON.parse(new TextDecoder().decode(item.chunk.bytes)); const chunk_type = chunk.type; if (chunk_type === "content_block_delta") { const text = chunk.delta.text; completeMessage = completeMessage + text; process.stdout.write(text); } } // Return the final response return completeMessage; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Write a paragraph starting with: "Once upon a time..."'; const modelId = FoundationModels.CLAUDE_3_HAIKU.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(`\n${"-".repeat(53)}`); console.log("Final structured response:"); console.log(response); } catch (err) { console.log(`\n${err}`); } }
-
如需API詳細資訊,請參閱 參考 InvokeModel中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Anthropic Claude 模型API,並列印回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息,並即時處理回應串流。
import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} ResponseContent * @property {string} text * * @typedef {Object} MessagesResponseBody * @property {ResponseContent[]} content * * @typedef {Object} Delta * @property {string} text * * @typedef {Object} Message * @property {string} role * * @typedef {Object} Chunk * @property {string} type * @property {Delta} delta * @property {Message} message */ /** * Invokes Anthropic Claude 3 using the Messages API. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModel = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {MessagesResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.content[0].text; }; /** * Invokes Anthropic Claude 3 and processes the response stream. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModelWithResponseStream = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the API to respond. const command = new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); let completeMessage = ""; // Decode and process the response stream for await (const item of apiResponse.body) { /** @type Chunk */ const chunk = JSON.parse(new TextDecoder().decode(item.chunk.bytes)); const chunk_type = chunk.type; if (chunk_type === "content_block_delta") { const text = chunk.delta.text; completeMessage = completeMessage + text; process.stdout.write(text); } } // Return the final response return completeMessage; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Write a paragraph starting with: "Once upon a time..."'; const modelId = FoundationModels.CLAUDE_3_HAIKU.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(`\n${"-".repeat(53)}`); console.log("Final structured response:"); console.log(response); } catch (err) { console.log(`\n${err}`); } }
-
如需API詳細資訊,請參閱 參考 InvokeModelWithResponseStream中的 。 AWS SDK for JavaScript API
-
Cohere Command
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere CommandAPI。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere CommandAPI。
// Use the Conversation API to send a text message to Cohere Command. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Command R. const modelId = "cohere.command-r-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱AWS SDK for JavaScript API參考 中的 Converse。
-
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere Command,API並即時處理回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere Command,API並即時處理回應串流。
// Use the Conversation API to send a text message to Cohere Command. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Command R. const modelId = "cohere.command-r-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱 參考 ConverseStream中的 。 AWS SDK for JavaScript API
-
Meta Llama
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Meta LlamaAPI。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Meta LlamaAPI。
// Use the Conversation API to send a text message to Meta Llama. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Llama 3 8b Instruct. const modelId = "meta.llama3-8b-instruct-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱AWS SDK for JavaScript API參考 中的 Converse。
-
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Meta Llama,API並即時處理回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Meta Llama,API並即時處理回應串流。
// Use the Conversation API to send a text message to Meta Llama. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Llama 3 8b Instruct. const modelId = "meta.llama3-8b-instruct-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱 參考 ConverseStream中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Meta Llama 2API。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息。
// Send a prompt to Meta Llama 2 and print the response. import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region of your choice. const client = new BedrockRuntimeClient({ region: "us-west-2" }); // Set the model ID, e.g., Llama 2 Chat 13B. const modelId = "meta.llama2-13b-chat-v1"; // Define the user message to send. const userMessage = "Describe the purpose of a 'hello world' program in one sentence."; // Embed the message in Llama 2's prompt format. const prompt = `<s>[INST] ${userMessage} [/INST]`; // Format the request payload using the model's native structure. const request = { prompt, // Optional inference parameters: max_gen_len: 512, temperature: 0.5, top_p: 0.9, }; // Encode and send the request. const response = await client.send( new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(request), modelId, }), ); // Decode the native response body. /** @type {{ generation: string }} */ const nativeResponse = JSON.parse(new TextDecoder().decode(response.body)); // Extract and print the generated text. const responseText = nativeResponse.generation; console.log(responseText); // Learn more about the Llama 2 prompt format at: // https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-2
-
如需API詳細資訊,請參閱 參考 InvokeModel中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Meta Llama 3API。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息。
// Send a prompt to Meta Llama 3 and print the response. import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region of your choice. const client = new BedrockRuntimeClient({ region: "us-west-2" }); // Set the model ID, e.g., Llama 3 70B Instruct. const modelId = "meta.llama3-70b-instruct-v1:0"; // Define the user message to send. const userMessage = "Describe the purpose of a 'hello world' program in one sentence."; // Embed the message in Llama 3's prompt format. const prompt = ` <|begin_of_text|><|start_header_id|>user<|end_header_id|> ${userMessage} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> `; // Format the request payload using the model's native structure. const request = { prompt, // Optional inference parameters: max_gen_len: 512, temperature: 0.5, top_p: 0.9, }; // Encode and send the request. const response = await client.send( new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(request), modelId, }), ); // Decode the native response body. /** @type {{ generation: string }} */ const nativeResponse = JSON.parse(new TextDecoder().decode(response.body)); // Extract and print the generated text. const responseText = nativeResponse.generation; console.log(responseText); // Learn more about the Llama 3 prompt format at: // https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-tokens-used-with-meta-llama-3
-
如需API詳細資訊,請參閱 參考 InvokeModel中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Meta Llama 2API,並列印回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息,並即時處理回應串流。
// Send a prompt to Meta Llama 2 and print the response stream in real-time. import { BedrockRuntimeClient, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region of your choice. const client = new BedrockRuntimeClient({ region: "us-west-2" }); // Set the model ID, e.g., Llama 2 Chat 13B. const modelId = "meta.llama2-13b-chat-v1"; // Define the user message to send. const userMessage = "Describe the purpose of a 'hello world' program in one sentence."; // Embed the message in Llama 2's prompt format. const prompt = `<s>[INST] ${userMessage} [/INST]`; // Format the request payload using the model's native structure. const request = { prompt, // Optional inference parameters: max_gen_len: 512, temperature: 0.5, top_p: 0.9, }; // Encode and send the request. const responseStream = await client.send( new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(request), modelId, }), ); // Extract and print the response stream in real-time. for await (const event of responseStream.body) { /** @type {{ generation: string }} */ const chunk = JSON.parse(new TextDecoder().decode(event.chunk.bytes)); if (chunk.generation) { process.stdout.write(chunk.generation); } } // Learn more about the Llama 3 prompt format at: // https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-tokens-used-with-meta-llama-3
-
如需API詳細資訊,請參閱 參考 InvokeModelWithResponseStream中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Meta Llama 3API,並列印回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息,並即時處理回應串流。
// Send a prompt to Meta Llama 3 and print the response stream in real-time. import { BedrockRuntimeClient, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region of your choice. const client = new BedrockRuntimeClient({ region: "us-west-2" }); // Set the model ID, e.g., Llama 3 70B Instruct. const modelId = "meta.llama3-70b-instruct-v1:0"; // Define the user message to send. const userMessage = "Describe the purpose of a 'hello world' program in one sentence."; // Embed the message in Llama 3's prompt format. const prompt = ` <|begin_of_text|><|start_header_id|>user<|end_header_id|> ${userMessage} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> `; // Format the request payload using the model's native structure. const request = { prompt, // Optional inference parameters: max_gen_len: 512, temperature: 0.5, top_p: 0.9, }; // Encode and send the request. const responseStream = await client.send( new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(request), modelId, }), ); // Extract and print the response stream in real-time. for await (const event of responseStream.body) { /** @type {{ generation: string }} */ const chunk = JSON.parse(new TextDecoder().decode(event.chunk.bytes)); if (chunk.generation) { process.stdout.write(chunk.generation); } } // Learn more about the Llama 3 prompt format at: // https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-tokens-used-with-meta-llama-3
-
如需API詳細資訊,請參閱 參考 InvokeModelWithResponseStream中的 。 AWS SDK for JavaScript API
-
混合式 AI
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 MistralAPI。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 MistralAPI。
// Use the Conversation API to send a text message to Mistral. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Mistral Large. const modelId = "mistral.mistral-large-2402-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱AWS SDK for JavaScript API參考 中的 Converse。
-
下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Mistral,API並即時處理回應串流。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用 Bedrock 的 Converse 將文字訊息傳送至 Mistral,API並即時處理回應串流。
// Use the Conversation API to send a text message to Mistral. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Mistral Large. const modelId = "mistral.mistral-large-2402-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
-
如需API詳細資訊,請參閱 參考 ConverseStream中的 。 AWS SDK for JavaScript API
-
下列程式碼範例示範如何使用調用模型 將文字訊息傳送至 Mistral 模型API。
- SDK 適用於 JavaScript (v3)
-
注意
還有更多 。 GitHub尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用叫用模型API傳送文字訊息。
import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} Output * @property {string} text * * @typedef {Object} ResponseBody * @property {Output[]} outputs */ /** * Invokes a Mistral 7B Instruct model. * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "mistral.mistral-7b-instruct-v0:2". */ export const invokeModel = async ( prompt, modelId = "mistral.mistral-7b-instruct-v0:2", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Mistral instruct models provide optimal results when embedding // the prompt into the following template: const instruction = `<s>[INST] ${prompt} [/INST]`; // Prepare the payload. const payload = { prompt: instruction, max_tokens: 500, temperature: 0.5, }; // Invoke the model with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response. const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.outputs[0].text; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Complete the following in one sentence: "Once upon a time..."'; const modelId = FoundationModels.MISTRAL_7B.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(response); } catch (err) { console.log(err); } }
-
如需API詳細資訊,請參閱 參考 InvokeModel中的 。 AWS SDK for JavaScript API
-