使用 SDK for JavaScript (v3) 的 Amazon Bedrock 執行期範例 - AWS SDK for JavaScript

AWS SDK for JavaScript V3 API參考指南會詳細說明第 3 版 (V3) 的所有API操作 AWS SDK for JavaScript 。

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

使用 SDK for JavaScript (v3) 的 Amazon Bedrock 執行期範例

下列程式碼範例說明如何搭配 Amazon Bedrock Runtime 使用 AWS SDK for JavaScript (v3) 來執行動作和實作常見案例。

案例是向您展示如何呼叫服務中的多個函數或與其他 AWS 服務組合來完成特定任務的程式碼範例。

每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。

開始使用

下列程式碼範例說明如何開始使用 Amazon Bedrock。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

/** * @typedef {Object} Content * @property {string} text * * @typedef {Object} Usage * @property {number} input_tokens * @property {number} output_tokens * * @typedef {Object} ResponseBody * @property {Content[]} content * @property {Usage} usage */ import { fileURLToPath } from "node:url"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; const AWS_REGION = "us-east-1"; const MODEL_ID = "anthropic.claude-3-haiku-20240307-v1:0"; const PROMPT = "Hi. In a short paragraph, explain what you can do."; const hello = async () => { console.log("=".repeat(35)); console.log("Welcome to the Amazon Bedrock demo!"); console.log("=".repeat(35)); console.log("Model: Anthropic Claude 3 Haiku"); console.log(`Prompt: ${PROMPT}\n`); console.log("Invoking model...\n"); // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: AWS_REGION }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [{ role: "user", content: [{ type: "text", text: PROMPT }] }], }; // Invoke Claude with the payload and wait for the response. const apiResponse = await client.send( new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId: MODEL_ID, }), ); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); const responses = responseBody.content; if (responses.length === 1) { console.log(`Response: ${responses[0].text}`); } else { console.log("Haiku returned multiple responses:"); console.log(responses); } console.log(`\nNumber of input tokens: ${responseBody.usage.input_tokens}`); console.log(`Number of output tokens: ${responseBody.usage.output_tokens}`); }; if (process.argv[1] === fileURLToPath(import.meta.url)) { await hello(); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考InvokeModel中的 。

案例

下列程式碼範例示範如何準備並傳送提示給 Amazon Bedrock 上的各種大型語言模型 (LLMs)

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

import { fileURLToPath } from "node:url"; import { Scenario, ScenarioAction, ScenarioInput, ScenarioOutput, } from "@aws-doc-sdk-examples/lib/scenario/index.js"; import { FoundationModels } from "../config/foundation_models.js"; /** * @typedef {Object} ModelConfig * @property {Function} module * @property {Function} invoker * @property {string} modelId * @property {string} modelName */ const greeting = new ScenarioOutput( "greeting", "Welcome to the Amazon Bedrock Runtime client demo!", { header: true }, ); const selectModel = new ScenarioInput("model", "First, select a model:", { type: "select", choices: Object.values(FoundationModels).map((model) => ({ name: model.modelName, value: model, })), }); const enterPrompt = new ScenarioInput("prompt", "Now, enter your prompt:", { type: "input", }); const printDetails = new ScenarioOutput( "print details", /** * @param {{ model: ModelConfig, prompt: string }} c */ (c) => console.log(`Invoking ${c.model.modelName} with '${c.prompt}'...`), ); const invokeModel = new ScenarioAction( "invoke model", /** * @param {{ model: ModelConfig, prompt: string, response: string }} c */ async (c) => { const modelModule = await c.model.module(); const invoker = c.model.invoker(modelModule); c.response = await invoker(c.prompt, c.model.modelId); }, ); const printResponse = new ScenarioOutput( "print response", /** * @param {{ response: string }} c */ (c) => c.response, ); const scenario = new Scenario("Amazon Bedrock Runtime Demo", [ greeting, selectModel, enterPrompt, printDetails, invokeModel, printResponse, ]); if (process.argv[1] === fileURLToPath(import.meta.url)) { scenario.run(); }

AI21 實驗室 Jurassic-2

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 AI21 Labs Jurassic-2API。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 AI21 Labs Jurassic-2API。

// Use the Conversation API to send a text message to AI21 Labs Jurassic-2. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Jurassic-2 Mid. const modelId = "ai21.j2-mid-v1"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考中的 內容

下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 AI21 Labs Jurassic-2API。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用叫用模型API傳送文字訊息。

import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} Data * @property {string} text * * @typedef {Object} Completion * @property {Data} data * * @typedef {Object} ResponseBody * @property {Completion[]} completions */ /** * Invokes an AI21 Labs Jurassic-2 model. * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "ai21.j2-mid-v1". */ export const invokeModel = async (prompt, modelId = "ai21.j2-mid-v1") => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { prompt, maxTokens: 500, temperature: 0.5, }; // Invoke the model with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response(s). const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.completions[0].data.text; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Complete the following in one sentence: "Once upon a time..."'; const modelId = FoundationModels.JURASSIC2_MID.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(response); } catch (err) { console.log(err); } }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考InvokeModel中的 。

Amazon Titan 文字

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan TextAPI。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan TextAPI。

// Use the Conversation API to send a text message to Amazon Titan Text. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Titan Text Premier. const modelId = "amazon.titan-text-premier-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考中的 內容

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan Text,API並即時處理回應串流。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Amazon Titan Text,API並即時處理回應串流。

// Use the Conversation API to send a text message to Amazon Titan Text. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Titan Text Premier. const modelId = "amazon.titan-text-premier-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考ConverseStream中的 。

下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Amazon Titan TextAPI。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用叫用模型API傳送文字訊息。

import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} ResponseBody * @property {Object[]} results */ /** * Invokes an Amazon Titan Text generation model. * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "amazon.titan-text-express-v1". */ export const invokeModel = async ( prompt, modelId = "amazon.titan-text-express-v1", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { inputText: prompt, textGenerationConfig: { maxTokenCount: 4096, stopSequences: [], temperature: 0, topP: 1, }, }; // Invoke the model with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response. const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.results[0].outputText; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Complete the following in one sentence: "Once upon a time..."'; const modelId = FoundationModels.TITAN_TEXT_G1_EXPRESS.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(response); } catch (err) { console.log(err); } }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考InvokeModel中的 。

Anthropic Claude

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic ClaudeAPI。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic ClaudeAPI。

// Use the Conversation API to send a text message to Anthropic Claude. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Claude 3 Haiku. const modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考中的 內容

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic Claude,API並即時處理回應串流。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Anthropic Claude,API並即時處理回應串流。

// Use the Conversation API to send a text message to Anthropic Claude. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Claude 3 Haiku. const modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考ConverseStream中的 。

下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Anthropic ClaudeAPI。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用叫用模型API傳送文字訊息。

import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} ResponseContent * @property {string} text * * @typedef {Object} MessagesResponseBody * @property {ResponseContent[]} content * * @typedef {Object} Delta * @property {string} text * * @typedef {Object} Message * @property {string} role * * @typedef {Object} Chunk * @property {string} type * @property {Delta} delta * @property {Message} message */ /** * Invokes Anthropic Claude 3 using the Messages API. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModel = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {MessagesResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.content[0].text; }; /** * Invokes Anthropic Claude 3 and processes the response stream. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModelWithResponseStream = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the API to respond. const command = new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); let completeMessage = ""; // Decode and process the response stream for await (const item of apiResponse.body) { /** @type Chunk */ const chunk = JSON.parse(new TextDecoder().decode(item.chunk.bytes)); const chunk_type = chunk.type; if (chunk_type === "content_block_delta") { const text = chunk.delta.text; completeMessage = completeMessage + text; process.stdout.write(text); } } // Return the final response return completeMessage; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Write a paragraph starting with: "Once upon a time..."'; const modelId = FoundationModels.CLAUDE_3_HAIKU.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(`\n${"-".repeat(53)}`); console.log("Final structured response:"); console.log(response); } catch (err) { console.log(`\n${err}`); } }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考InvokeModel中的 。

下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Anthropic Claude 模型API,並列印回應串流。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用叫用模型API傳送文字訊息,並即時處理回應串流。

import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} ResponseContent * @property {string} text * * @typedef {Object} MessagesResponseBody * @property {ResponseContent[]} content * * @typedef {Object} Delta * @property {string} text * * @typedef {Object} Message * @property {string} role * * @typedef {Object} Chunk * @property {string} type * @property {Delta} delta * @property {Message} message */ /** * Invokes Anthropic Claude 3 using the Messages API. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModel = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {MessagesResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.content[0].text; }; /** * Invokes Anthropic Claude 3 and processes the response stream. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModelWithResponseStream = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the API to respond. const command = new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); let completeMessage = ""; // Decode and process the response stream for await (const item of apiResponse.body) { /** @type Chunk */ const chunk = JSON.parse(new TextDecoder().decode(item.chunk.bytes)); const chunk_type = chunk.type; if (chunk_type === "content_block_delta") { const text = chunk.delta.text; completeMessage = completeMessage + text; process.stdout.write(text); } } // Return the final response return completeMessage; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Write a paragraph starting with: "Once upon a time..."'; const modelId = FoundationModels.CLAUDE_3_HAIKU.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(`\n${"-".repeat(53)}`); console.log("Final structured response:"); console.log(response); } catch (err) { console.log(`\n${err}`); } }

Cohere Command

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere CommandAPI。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere CommandAPI。

// Use the Conversation API to send a text message to Cohere Command. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Command R. const modelId = "cohere.command-r-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考中的 Converse

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere Command,API並即時處理回應串流。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Cohere Command,API並即時處理回應串流。

// Use the Conversation API to send a text message to Cohere Command. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Command R. const modelId = "cohere.command-r-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考ConverseStream中的 。

Meta Llama

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Meta LlamaAPI。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Meta LlamaAPI。

// Use the Conversation API to send a text message to Meta Llama. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Llama 3 8b Instruct. const modelId = "meta.llama3-8b-instruct-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考中的 內容

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Meta Llama,API並即時處理回應串流。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Meta Llama,API並即時處理回應串流。

// Use the Conversation API to send a text message to Meta Llama. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Llama 3 8b Instruct. const modelId = "meta.llama3-8b-instruct-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考ConverseStream中的 。

下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Meta Llama 3API。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用叫用模型API傳送文字訊息。

// Send a prompt to Meta Llama 3 and print the response. import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region of your choice. const client = new BedrockRuntimeClient({ region: "us-west-2" }); // Set the model ID, e.g., Llama 3 70B Instruct. const modelId = "meta.llama3-70b-instruct-v1:0"; // Define the user message to send. const userMessage = "Describe the purpose of a 'hello world' program in one sentence."; // Embed the message in Llama 3's prompt format. const prompt = ` <|begin_of_text|><|start_header_id|>user<|end_header_id|> ${userMessage} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> `; // Format the request payload using the model's native structure. const request = { prompt, // Optional inference parameters: max_gen_len: 512, temperature: 0.5, top_p: 0.9, }; // Encode and send the request. const response = await client.send( new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(request), modelId, }), ); // Decode the native response body. /** @type {{ generation: string }} */ const nativeResponse = JSON.parse(new TextDecoder().decode(response.body)); // Extract and print the generated text. const responseText = nativeResponse.generation; console.log(responseText); // Learn more about the Llama 3 prompt format at: // https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-tokens-used-with-meta-llama-3
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考InvokeModel中的 。

下列程式碼範例示範如何使用叫用模型 將文字訊息傳送至 Meta Llama 3API,並列印回應串流。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用叫用模型API傳送文字訊息,並即時處理回應串流。

// Send a prompt to Meta Llama 3 and print the response stream in real-time. import { BedrockRuntimeClient, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region of your choice. const client = new BedrockRuntimeClient({ region: "us-west-2" }); // Set the model ID, e.g., Llama 3 70B Instruct. const modelId = "meta.llama3-70b-instruct-v1:0"; // Define the user message to send. const userMessage = "Describe the purpose of a 'hello world' program in one sentence."; // Embed the message in Llama 3's prompt format. const prompt = ` <|begin_of_text|><|start_header_id|>user<|end_header_id|> ${userMessage} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> `; // Format the request payload using the model's native structure. const request = { prompt, // Optional inference parameters: max_gen_len: 512, temperature: 0.5, top_p: 0.9, }; // Encode and send the request. const responseStream = await client.send( new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(request), modelId, }), ); // Extract and print the response stream in real-time. for await (const event of responseStream.body) { /** @type {{ generation: string }} */ const chunk = JSON.parse(new TextDecoder().decode(event.chunk.bytes)); if (chunk.generation) { process.stdout.write(chunk.generation); } } // Learn more about the Llama 3 prompt format at: // https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-tokens-used-with-meta-llama-3

混合 AI

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 MistralAPI。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 MistralAPI。

// Use the Conversation API to send a text message to Mistral. import { BedrockRuntimeClient, ConverseCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Mistral Large. const modelId = "mistral.mistral-large-2402-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the response text. const responseText = response.output.message.content[0].text; console.log(responseText); } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考中的 內容

下列程式碼範例示範如何使用 Bedrock 的 Converse 將文字訊息傳送至 Mistral,API並即時處理回應串流。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Bedrock 的 Converse 將文字訊息傳送至 Mistral,API並即時處理回應串流。

// Use the Conversation API to send a text message to Mistral. import { BedrockRuntimeClient, ConverseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; // Create a Bedrock Runtime client in the AWS Region you want to use. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Set the model ID, e.g., Mistral Large. const modelId = "mistral.mistral-large-2402-v1:0"; // Start a conversation with the user message. const userMessage = "Describe the purpose of a 'hello world' program in one line."; const conversation = [ { role: "user", content: [{ text: userMessage }], }, ]; // Create a command with the model ID, the message, and a basic configuration. const command = new ConverseStreamCommand({ modelId, messages: conversation, inferenceConfig: { maxTokens: 512, temperature: 0.5, topP: 0.9 }, }); try { // Send the command to the model and wait for the response const response = await client.send(command); // Extract and print the streamed response text in real-time. for await (const item of response.stream) { if (item.contentBlockDelta) { process.stdout.write(item.contentBlockDelta.delta?.text); } } } catch (err) { console.log(`ERROR: Can't invoke '${modelId}'. Reason: ${err}`); process.exit(1); }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考ConverseStream中的 。

下列程式碼範例示範如何使用調用模型 將文字訊息傳送至 Mistral 模型API。

SDK for JavaScript (v3)
注意

還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用叫用模型API傳送文字訊息。

import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} Output * @property {string} text * * @typedef {Object} ResponseBody * @property {Output[]} outputs */ /** * Invokes a Mistral 7B Instruct model. * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "mistral.mistral-7b-instruct-v0:2". */ export const invokeModel = async ( prompt, modelId = "mistral.mistral-7b-instruct-v0:2", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Mistral instruct models provide optimal results when embedding // the prompt into the following template: const instruction = `<s>[INST] ${prompt} [/INST]`; // Prepare the payload. const payload = { prompt: instruction, max_tokens: 500, temperature: 0.5, }; // Invoke the model with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response. const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.outputs[0].text; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Complete the following in one sentence: "Once upon a time..."'; const modelId = FoundationModels.MISTRAL_7B.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(response); } catch (err) { console.log(err); } }
  • 如需API詳細資訊,請參閱 AWS SDK for JavaScript API 參考InvokeModel中的 。