本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
使用 Amazon Textract 分析文檔文本
若要分析文檔中的文本,請使用AnalyzeDocument操作,並將文檔文件作為輸入傳遞。AnalyzeDocument
會傳回含有分析文字的 JSON 結構。如需詳細資訊,請參閱 分析文檔。
您提供的輸入文檔可以是影像位元組陣列 (base64 編碼影像位元組),或者 Amazon S3 物件。在此步驟中,您會將影像檔案上傳至您的 S3 儲存貯體,並指定檔案名稱。
分析文檔中的文本 (API)
如果您尚未:
使用創建或更新 IAM 用户
AmazonTextractFullAccess
和AmazonS3ReadOnlyAccess
許可。如需詳細資訊,請參閱 步驟 1:設定 AWS 帳户並建立 IAM 使用者。安裝並設定 AWS CLI 和 AWS SDK。如需詳細資訊,請參閱 步驟 2:設定AWS CLI和AWS開發套件。
-
將含有文檔的影像上傳至您的 S3 儲存貯體。
如需說明,請參閱「」將物件上傳至 Amazon S3中的Amazon Simple Storage Service 用户指南。
使用下列範例來呼叫
AnalyzeDocument
操作。- Java
以下範例程式碼會顯示檢測到的項目周圍的文件和框。
在函數中
main
中,替換bucket
和document
以您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與文件影像名稱來取代和。//Loads document from S3 bucket. Displays the document and polygon around detected lines of text. package com.amazonaws.samples; import java.awt.*; import java.awt.image.BufferedImage; import java.util.List; import javax.imageio.ImageIO; import javax.swing.*; import com.amazonaws.services.s3.AmazonS3; import com.amazonaws.services.s3.AmazonS3ClientBuilder; import com.amazonaws.services.s3.model.S3ObjectInputStream; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.AnalyzeDocumentRequest; import com.amazonaws.services.textract.model.AnalyzeDocumentResult; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.BoundingBox; import com.amazonaws.services.textract.model.Document; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.Point; import com.amazonaws.services.textract.model.Relationship; import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration; public class AnalyzeDocument extends JPanel { private static final long serialVersionUID = 1L; BufferedImage image; AnalyzeDocumentResult result; public AnalyzeDocument(AnalyzeDocumentResult documentResult, BufferedImage bufImage) throws Exception { super(); result = documentResult; // Results of text detection. image = bufImage; // The image containing the document. } // Draws the image and text bounding box. public void paintComponent(Graphics g) { int height = image.getHeight(this); int width = image.getWidth(this); Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g. // Draw the image. g2d.drawImage(image, 0, 0, image.getWidth(this), image.getHeight(this), this); // Iterate through blocks and display bounding boxes around everything. List<Block> blocks = result.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); switch(block.getBlockType()) { case "KEY_VALUE_SET": if (block.getEntityTypes().contains("KEY")){ ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(255,0,0)); } else { //VALUE ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(0,255,0)); } break; case "TABLE": ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(0,0,255)); break; case "CELL": ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(255,255,0)); break; case "SELECTION_ELEMENT": if (block.getSelectionStatus().equals("SELECTED")) ShowSelectedElement(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(0,0,255)); break; default: //PAGE, LINE & WORD //ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(200,200,0)); } } // uncomment to show polygon around all blocks //ShowPolygon(height,width,block.getGeometry().getPolygon(),g2d); } // Show bounding box at supplied location. private void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box, Graphics2D g2d, Color color) { float left = imageWidth * box.getLeft(); float top = imageHeight * box.getTop(); // Display bounding box. g2d.setColor(color); g2d.drawRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.getWidth()), Math.round(imageHeight * box.getHeight())); } private void ShowSelectedElement(int imageHeight, int imageWidth, BoundingBox box, Graphics2D g2d, Color color) { float left = imageWidth * box.getLeft(); float top = imageHeight * box.getTop(); // Display bounding box. g2d.setColor(color); g2d.fillRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.getWidth()), Math.round(imageHeight * box.getHeight())); } // Shows polygon at supplied location private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 0, 0)); Polygon polygon = new Polygon(); // Construct polygon and display for (Point point : points) { polygon.addPoint((Math.round(point.getX() * imageWidth)), Math.round(point.getY() * imageHeight)); } g2d.drawPolygon(polygon); } //Displays information from a block returned by text detection and text analysis private void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println(" Detected text: " + block.getText()); System.out.println(" Type: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println(" Confidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println(" Cell information:"); System.out.println(" Column: " + block.getColumnIndex()); System.out.println(" Row: " + block.getRowIndex()); System.out.println(" Column span: " + block.getColumnSpan()); System.out.println(" Row span: " + block.getRowSpan()); } System.out.println(" Relationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println(" Type: " + relationship.getType()); System.out.println(" IDs: " + relationship.getIds().toString()); } } else { System.out.println(" No related Blocks"); } System.out.println(" Geometry"); System.out.println(" Bounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println(" Polygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println(" Entity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println(" Entity Type: " + entityType); } } else { System.out.println(" No entity type"); } if(block.getBlockType().equals("SELECTION_ELEMENT")) { System.out.print(" Selection element detected: "); if (block.getSelectionStatus().equals("SELECTED")){ System.out.println("Selected"); }else { System.out.println(" Not selected"); } } if(block.getPage()!=null) System.out.println(" Page: " + block.getPage()); System.out.println(); } public static void main(String arg[]) throws Exception { // The S3 bucket and document String document = ""; String bucket = ""; AmazonS3 s3client = AmazonS3ClientBuilder.standard() .withEndpointConfiguration( new EndpointConfiguration("https://s3.amazonaws.com","us-east-1")) .build(); // Get the document from S3 com.amazonaws.services.s3.model.S3Object s3object = s3client.getObject(bucket, document); S3ObjectInputStream inputStream = s3object.getObjectContent(); BufferedImage image = ImageIO.read(inputStream); // Call AnalyzeDocument EndpointConfiguration endpoint = new EndpointConfiguration( "https://textract.us-east-1.amazonaws.com", "us-east-1"); AmazonTextract client = AmazonTextractClientBuilder.standard() .withEndpointConfiguration(endpoint).build(); AnalyzeDocumentRequest request = new AnalyzeDocumentRequest() .withFeatureTypes("TABLES","FORMS") .withDocument(new Document(). withS3Object(new S3Object().withName(document).withBucket(bucket))); AnalyzeDocumentResult result = client.analyzeDocument(request); // Create frame and panel. JFrame frame = new JFrame("RotateImage"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); AnalyzeDocument panel = new AnalyzeDocument(result, image); panel.setPreferredSize(new Dimension(image.getWidth(), image.getHeight())); frame.setContentPane(panel); frame.pack(); frame.setVisible(true); } }
- AWS CLI
-
此 AWS CLI 命令顯示
detect-document-text
CLI 操作的 JSON 輸出。替換
Bucket
和Name
以您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與文件名稱來取代和。aws textract analyze-document \ --document '{"S3Object":{"Bucket":"
bucket
","Name":"document
"}}' \ --feature-types '["TABLES","FORMS"
]' - Python
-
以下範例程式碼會顯示檢測到的項目周圍的文件和框。
在函數中
main
中,替換bucket
和document
以您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與文件名稱來取代和。#Analyzes text in a document stored in an S3 bucket. Display polygon box around text and angled text import boto3 import io from io import BytesIO import sys import math from PIL import Image, ImageDraw, ImageFont def ShowBoundingBox(draw,box,width,height,boxColor): left = width * box['Left'] top = height * box['Top'] draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],outline=boxColor) def ShowSelectedElement(draw,box,width,height,boxColor): left = width * box['Left'] top = height * box['Top'] draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],fill=boxColor) # Displays information about a block returned by text detection and text analysis def DisplayBlockInformation(block): print('Id: {}'.format(block['Id'])) if 'Text' in block: print(' Detected: ' + block['Text']) print(' Type: ' + block['BlockType']) if 'Confidence' in block: print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") if block['BlockType'] == 'CELL': print(" Cell information") print(" Column:" + str(block['ColumnIndex'])) print(" Row:" + str(block['RowIndex'])) print(" Column Span:" + str(block['ColumnSpan'])) print(" RowSpan:" + str(block['ColumnSpan'])) if 'Relationships' in block: print(' Relationships: {}'.format(block['Relationships'])) print(' Geometry: ') print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print(' Polygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == "KEY_VALUE_SET": print (' Entity Type: ' + block['EntityTypes'][0]) if block['BlockType'] == 'SELECTION_ELEMENT': print(' Selection element detected: ', end='') if block['SelectionStatus'] =='SELECTED': print('Selected') else: print('Not selected') if 'Page' in block: print('Page: ' + block['Page']) print() def process_text_analysis(bucket, document): #Get the document from S3 s3_connection = boto3.resource('s3') s3_object = s3_connection.Object(bucket,document) s3_response = s3_object.get() stream = io.BytesIO(s3_response['Body'].read()) image=Image.open(stream) # Analyze the document client = boto3.client('textract') image_binary = stream.getvalue() response = client.analyze_document(Document={'Bytes': image_binary}, FeatureTypes=["TABLES", "FORMS"]) ### Alternatively, process using S3 object ### #response = client.analyze_document( # Document={'S3Object': {'Bucket': bucket, 'Name': document}}, # FeatureTypes=["TABLES", "FORMS"]) ### To use a local file ### # with open("pathToFile", 'rb') as img_file: ### To display image using PIL ### # image = Image.open() ### Read bytes ### # img_bytes = img_file.read() # response = client.analyze_document(Document={'Bytes': img_bytes}, FeatureTypes=["TABLES", "FORMS"]) #Get the text blocks blocks=response['Blocks'] width, height =image.size draw = ImageDraw.Draw(image) print ('Detected Document Text') # Create image showing bounding box/polygon the detected lines/text for block in blocks: DisplayBlockInformation(block) draw=ImageDraw.Draw(image) if block['BlockType'] == "KEY_VALUE_SET": if block['EntityTypes'][0] == "KEY": ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,'red') else: ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,'green') if block['BlockType'] == 'TABLE': ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height, 'blue') if block['BlockType'] == 'CELL': ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height, 'yellow') if block['BlockType'] == 'SELECTION_ELEMENT': if block['SelectionStatus'] =='SELECTED': ShowSelectedElement(draw, block['Geometry']['BoundingBox'],width,height, 'blue') #uncomment to draw polygon for all Blocks #points=[] #for polygon in block['Geometry']['Polygon']: # points.append((width * polygon['X'], height * polygon['Y'])) #draw.polygon((points), outline='blue') # Display the image image.show() return len(blocks) def main(): bucket = '' document = '' block_count=process_text_analysis(bucket,document) print("Blocks detected: " + str(block_count)) if __name__ == "__main__": main()
- Node.js
-
以下範例程式碼會顯示檢測到的項目周圍的文件和框。
在下面的代碼中,替換
bucket
和photo
以您在步驟 2 中所使用的 Amazon S3 儲存貯體名稱與文件名稱來取代和。替換region
以及與帳户相關聯的地區。// Import required AWS SDK clients and commands for Node.js import { AnalyzeDocumentCommand } from "@aws-sdk/client-textract"; import { TextractClient } from "@aws-sdk/client-textract"; // Set the AWS Region. const REGION = "region"; //e.g. "us-east-1" // Create SNS service object. const textractClient = new TextractClient({ region: REGION }); const bucket = 'buckets' const photo = 'photo' // Set params const params = { Document: { S3Object: { Bucket: bucket, Name: photo }, }, FeatureTypes: ['TABLES', 'FORMS'], } const displayBlockInfo = async (response) => { try { response.Blocks.forEach(block => { console.log(`ID: ${block.Id}`) console.log(`Block Type: ${block.BlockType}`) if ("Text" in block && block.Text !== undefined){ console.log(`Text: ${block.Text}`) } else{} if ("Confidence" in block && block.Confidence !== undefined){ console.log(`Confidence: ${block.Confidence}`) } else{} if (block.BlockType == 'CELL'){ console.log("Cell info:") console.log(` Column Index - ${block.ColumnIndex}`) console.log(` Row - ${block.RowIndex}`) console.log(` Column Span - ${block.ColumnSpan}`) console.log(` Row Span - ${block.RowSpan}`) } if ("Relationships" in block && block.Relationships !== undefined){ console.log(block.Relationships) console.log("Geometry:") console.log(` Bounding Box - ${JSON.stringify(block.Geometry.BoundingBox)}`) console.log(` Polygon - ${JSON.stringify(block.Geometry.Polygon)}`) } console.log("-----") }); } catch (err) { console.log("Error", err); } } const analyze_document_text = async () => { try { const analyzeDoc = new AnalyzeDocumentCommand(params); const response = await textractClient.send(analyzeDoc); //console.log(response) displayBlockInfo(response) return response; // For unit tests. } catch (err) { console.log("Error", err); } } analyze_document_text()
執行範例。Python 和 Java 示例顯示帶有以下彩色邊界框的文檔圖像:
紅色 — 密鑰塊對象
綠色 — 值塊對象
藍色 — 表格塊對象
黃色 — 單元格塊對象
選取的選擇元素將用藍色填充。
所以此AWS CLI示例僅顯示
AnalyzeDocument
operation.