選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

MLOE-13: Establish reliable packaging patterns to access approved public libraries - Machine Learning Lens
此頁面尚未翻譯為您的語言。 請求翻譯

MLOE-13: Establish reliable packaging patterns to access approved public libraries

Establish reliable packaging patterns for data scientists, which include (a) the use of internal repositories that provide access to public libraries and (b) the creation of separate kernels for common ML frameworks. Examples of such common ML frameworks include TensorFlow, PyTorch, Scikit-learn, and Keras.

Implementation plan

  • Use container technology - Use or alternatively bring custom containers and store them in Amazon Elastic Container Registry (Amazon ECR). Using containers, you can train machine learning algorithms and deploy models quickly and reliably at any scale.

  • Use artifact repository - Set up AWS CodeArtifact to be used as a central internal artifact repository. This will enable pulling artifacts from internal repositories and reusing them.

Documents

Blogs

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。