選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

MLPER-04: Use a modern data architecture - Machine Learning Lens
此頁面尚未翻譯為您的語言。 請求翻譯

MLPER-04: Use a modern data architecture

Get the best insights from exponentially growing data using a modern data architecture. This architecture enables easy movement of data between a data lake and purpose-built stores including a data warehouse, relational databases, non-relational databases, ML and big data processing, and log analytics. A data lake provides a single place to run analytics across mixed data structures collected from disparate sources. Purpose-built analytics services provide the speed required for specific use cases like real-time dashboards and log analytics.

Implementation plan

  • Unify data governance and access - Integrate a data lake, a data warehouse, and purpose-built stores. This will enable unified governance and easy data movement. With a Modern Data Architecture on AWS, you can store data in a data lake and use data services around it. Use AWS Lake Formation to build a scalable and secure data lake. Build a high-speed analytic layer with purpose-built services, such as Amazon Redshift, Amazon Kinesis, and Amazon Athena. Integrate data across services and data stores with AWS Glue. Apply governance policies to manage security, access control, and audit trails across all the data stores using AWS IAM.

Documents

Blogs

Videos

Examples

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。