Invoke Stability.ai Stable Diffusion XL on Amazon Bedrock to generate an image - Amazon Bedrock

Invoke Stability.ai Stable Diffusion XL on Amazon Bedrock to generate an image

The following code examples show how to invoke Stability.ai Stable Diffusion XL on Amazon Bedrock to generate an image.

Java
SDK for Java 2.x
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create an image with Stable Diffusion.

// Create an image with Stable Diffusion. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import java.math.BigInteger; import java.security.SecureRandom; import static com.example.bedrockruntime.libs.ImageTools.displayImage; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Stable Diffusion XL v1. var modelId = "stability.stable-diffusion-xl-v1"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-diffusion-1-0-text-image.html var nativeRequestTemplate = """ { "text_prompts": [{ "text": "{{prompt}}" }], "style_preset": "{{style}}", "seed": {{seed}} }"""; // Define the prompt for the image generation. var prompt = "A stylized picture of a cute old steampunk robot"; // Get a random 32-bit seed for the image generation (max. 4,294,967,295). var seed = new BigInteger(31, new SecureRandom()); // Choose a style preset. var style = "cinematic"; // Embed the prompt, seed, and style in the model's native request payload. String nativeRequest = nativeRequestTemplate .replace("{{prompt}}", prompt) .replace("{{seed}}", seed.toString()) .replace("{{style}}", style); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated image data from the model's response. var base64ImageData = new JSONPointer("/artifacts/0/base64") .queryFrom(responseBody) .toString(); return base64ImageData; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { System.out.println("Generating image. This may take a few seconds..."); String base64ImageData = invokeModel(); displayImage(base64ImageData); } }
  • For API details, see InvokeModel in AWS SDK for Java 2.x API Reference.

PHP
SDK for PHP
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create an image with Stable Diffusion.

public function invokeStableDiffusion(string $prompt, int $seed, string $style_preset) { # The different model providers have individual request and response formats. # For the format, ranges, and available style_presets of Stable Diffusion models refer to: # https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-stability-diffusion.html $base64_image_data = ""; try { $modelId = 'stability.stable-diffusion-xl'; $body = [ 'text_prompts' => [ ['text' => $prompt] ], 'seed' => $seed, 'cfg_scale' => 10, 'steps' => 30 ]; if ($style_preset) { $body['style_preset'] = $style_preset; } $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $base64_image_data = $response_body->artifacts[0]->base64; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $base64_image_data; }
  • For API details, see InvokeModel in AWS SDK for PHP API Reference.

Python
SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create an image with Stable Diffusion.

# Use the native inference API to create an image with Stability.ai Stable Diffusion import base64 import boto3 import json import os import random # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Stable Diffusion XL 1. model_id = "stability.stable-diffusion-xl-v1" # Define the image generation prompt for the model. prompt = "A stylized picture of a cute old steampunk robot." # Generate a random seed. seed = random.randint(0, 4294967295) # Format the request payload using the model's native structure. native_request = { "text_prompts": [{"text": prompt}], "style_preset": "photographic", "seed": seed, "cfg_scale": 10, "steps": 30, } # Convert the native request to JSON. request = json.dumps(native_request) # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract the image data. base64_image_data = model_response["artifacts"][0]["base64"] # Save the generated image to a local folder. i, output_dir = 1, "output" if not os.path.exists(output_dir): os.makedirs(output_dir) while os.path.exists(os.path.join(output_dir, f"stability_{i}.png")): i += 1 image_data = base64.b64decode(base64_image_data) image_path = os.path.join(output_dir, f"stability_{i}.png") with open(image_path, "wb") as file: file.write(image_data) print(f"The generated image has been saved to {image_path}")
  • For API details, see InvokeModel in AWS SDK for Python (Boto3) API Reference.

SAP ABAP
SDK for SAP ABAP
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create an image with Stable Diffusion.

"Stable Diffusion Input Parameters should be in a format like this: * { * "text_prompts": [ * {"text":"Draw a dolphin with a mustache"}, * {"text":"Make it photorealistic"} * ], * "cfg_scale":10, * "seed":0, * "steps":50 * } TYPES: BEGIN OF prompt_ts, text TYPE /aws1/rt_shape_string, END OF prompt_ts. DATA: BEGIN OF ls_input, text_prompts TYPE STANDARD TABLE OF prompt_ts, cfg_scale TYPE /aws1/rt_shape_integer, seed TYPE /aws1/rt_shape_integer, steps TYPE /aws1/rt_shape_integer, END OF ls_input. APPEND VALUE prompt_ts( text = iv_prompt ) TO ls_input-text_prompts. ls_input-cfg_scale = 10. ls_input-seed = 0. "or better, choose a random integer. ls_input-steps = 50. DATA(lv_json) = /ui2/cl_json=>serialize( data = ls_input pretty_name = /ui2/cl_json=>pretty_mode-low_case ). TRY. DATA(lo_response) = lo_bdr->invokemodel( iv_body = /aws1/cl_rt_util=>string_to_xstring( lv_json ) iv_modelid = 'stability.stable-diffusion-xl-v1' iv_accept = 'application/json' iv_contenttype = 'application/json' ). "Stable Diffusion Result Format: * { * "result": "success", * "artifacts": [ * { * "seed": 0, * "base64": "iVBORw0KGgoAAAANSUhEUgAAAgAAA.... * "finishReason": "SUCCESS" * } * ] * } TYPES: BEGIN OF artifact_ts, seed TYPE /aws1/rt_shape_integer, base64 TYPE /aws1/rt_shape_string, finishreason TYPE /aws1/rt_shape_string, END OF artifact_ts. DATA: BEGIN OF ls_response, result TYPE /aws1/rt_shape_string, artifacts TYPE STANDARD TABLE OF artifact_ts, END OF ls_response. /ui2/cl_json=>deserialize( EXPORTING jsonx = lo_response->get_body( ) pretty_name = /ui2/cl_json=>pretty_mode-camel_case CHANGING data = ls_response ). IF ls_response-artifacts IS NOT INITIAL. DATA(lv_image) = cl_http_utility=>if_http_utility~decode_x_base64( ls_response-artifacts[ 1 ]-base64 ). ENDIF. CATCH /aws1/cx_bdraccessdeniedex INTO DATA(lo_ex). WRITE / lo_ex->get_text( ). WRITE / |Don't forget to enable model access at https://console.aws.amazon.com/bedrock/home?#/modelaccess|. ENDTRY.

Invoke the Stability.ai Stable Diffusion XL foundation model to generate images using L2 high level client.

TRY. DATA(lo_bdr_l2_sd) = /aws1/cl_bdr_l2_factory=>create_stable_diffusion_xl_1( lo_bdr ). " iv_prompt contains a prompt like 'Show me a picture of a unicorn reading an enterprise financial report'. DATA(lv_image) = lo_bdr_l2_sd->text_to_image( iv_prompt ). CATCH /aws1/cx_bdraccessdeniedex INTO DATA(lo_ex). WRITE / lo_ex->get_text( ). WRITE / |Don't forget to enable model access at https://console.aws.amazon.com/bedrock/home?#/modelaccess|. ENDTRY.
  • For API details, see InvokeModel in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Bedrock with an AWS SDK. This topic also includes information about getting started and details about previous SDK versions.