CDK Construct library for higher-level ECS Constructs

--- ![cdk-constructs: Stable](https://img.shields.io/badge/cdk--constructs-stable-success.svg?style=for-the-badge) ---

This library provides higher-level Amazon ECS constructs which follow common architectural patterns. It contains:

  • Application Load Balanced Services

  • Network Load Balanced Services

  • Queue Processing Services

  • Scheduled Tasks (cron jobs)

  • Additional Examples

Application Load Balanced Services

To define an Amazon ECS service that is behind an application load balancer, instantiate one of the following:

  • ApplicationLoadBalancedEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.ApplicationLoadBalancedEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("test"),
        "environment": {
            "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
            "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
        }
    },
    desired_count=2
)
  • ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

load_balanced_fargate_service.target_group.configure_health_check(
    path="/custom-health-path"
)

Instead of providing a cluster you can specify a VPC and CDK will create a new ECS cluster. If you deploy multiple services CDK will only create one cluster per VPC.

You can omit cluster and vpc to let CDK create a new VPC with two AZs and create a cluster inside this VPC.

You can customize the health check for your target group; otherwise it defaults to HTTP over port 80 hitting path /.

Fargate services will use the LATEST platform version by default, but you can override by providing a value for the platformVersion property in the constructor.

Fargate services use the default VPC Security Group unless one or more are provided using the securityGroups property in the constructor.

By setting redirectHTTP to true, CDK will automatically create a listener on port 80 that redirects HTTP traffic to the HTTPS port.

Additionally, if more than one application target group are needed, instantiate one of the following:

  • ApplicationMultipleTargetGroupsEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_ec2_service = ApplicationMultipleTargetGroupsEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=256,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    target_groups=[{
        "container_port": 80
    }, {
        "container_port": 90,
        "path_pattern": "a/b/c",
        "priority": 10
    }
    ]
)
  • ApplicationMultipleTargetGroupsFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_fargate_service = ApplicationMultipleTargetGroupsFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    target_groups=[{
        "container_port": 80
    }, {
        "container_port": 90,
        "path_pattern": "a/b/c",
        "priority": 10
    }
    ]
)

Network Load Balanced Services

To define an Amazon ECS service that is behind a network load balancer, instantiate one of the following:

  • NetworkLoadBalancedEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.NetworkLoadBalancedEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("test"),
        "environment": {
            "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
            "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
        }
    },
    desired_count=2
)
  • NetworkLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

The CDK will create a new Amazon ECS cluster if you specify a VPC and omit cluster. If you deploy multiple services the CDK will only create one cluster per VPC.

If cluster and vpc are omitted, the CDK creates a new VPC with subnets in two Availability Zones and a cluster within this VPC.

Additionally, if more than one network target group is needed, instantiate one of the following:

  • NetworkMultipleTargetGroupsEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_ec2_service = NetworkMultipleTargetGroupsEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=256,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    load_balancers=[{
        "name": "lb1",
        "listeners": [{
            "name": "listener1"
        }
        ]
    }, {
        "name": "lb2",
        "listeners": [{
            "name": "listener2"
        }
        ]
    }
    ],
    target_groups=[{
        "container_port": 80,
        "listener": "listener1"
    }, {
        "container_port": 90,
        "listener": "listener2"
    }
    ]
)
  • NetworkMultipleTargetGroupsFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_fargate_service = NetworkMultipleTargetGroupsFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    load_balancers=[{
        "name": "lb1",
        "listeners": [{
            "name": "listener1"
        }
        ]
    }, {
        "name": "lb2",
        "listeners": [{
            "name": "listener2"
        }
        ]
    }
    ],
    target_groups=[{
        "container_port": 80,
        "listener": "listener1"
    }, {
        "container_port": 90,
        "listener": "listener2"
    }
    ]
)

Queue Processing Services

To define a service that creates a queue and reads from that queue, instantiate one of the following:

  • QueueProcessingEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_ec2_service = QueueProcessingEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={
        "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
        "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
    },
    queue=queue,
    max_scaling_capacity=5
)
  • QueueProcessingFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={
        "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
        "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
    },
    queue=queue,
    max_scaling_capacity=5
)

when queue not provided by user, CDK will create a primary queue and a dead letter queue with default redrive policy and attach permission to the task to be able to access the primary queue.

Scheduled Tasks

To define a task that runs periodically, instantiate an ScheduledEc2Task:

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Instantiate an Amazon EC2 Task to run at a scheduled interval
ecs_scheduled_task = ScheduledEc2Task(stack, "ScheduledTask",
    cluster=cluster,
    scheduled_ec2_task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
        "memory_limit_mi_b": 256,
        "environment": {"name": "TRIGGER", "value": "CloudWatch Events"}
    },
    schedule=events.Schedule.expression("rate(1 minute)")
)

Additional Examples

In addition to using the constructs, users can also add logic to customize these constructs:

Add Schedule-Based Auto-Scaling to an ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from aws_cdk.aws_applicationautoscaling import Schedule
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService, ApplicationLoadBalancedFargateServiceProps

load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
    min_capacity=5,
    max_capacity=20
)

scalable_target.scale_on_schedule("DaytimeScaleDown",
    schedule=Schedule.cron(hour="8", minute="0"),
    min_capacity=1
)

scalable_target.scale_on_schedule("EveningRushScaleUp",
    schedule=Schedule.cron(hour="20", minute="0"),
    min_capacity=10
)

Add Metric-Based Auto-Scaling to an ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService

load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
    min_capacity=1,
    max_capacity=20
)

scalable_target.scale_on_cpu_utilization("CpuScaling",
    target_utilization_percent=50
)

scalable_target.scale_on_memory_utilization("MemoryScaling",
    target_utilization_percent=50
)

Set deployment configuration on QueueProcessingService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={},
    queue=queue,
    max_scaling_capacity=5,
    max_healthy_percent=200,
    min_health_percent=66
)