CDK Construct library for higher-level ECS Constructs

--- ![cdk-constructs: Stable](https://img.shields.io/badge/cdk--constructs-stable-success.svg?style=for-the-badge) ---

This library provides higher-level Amazon ECS constructs which follow common architectural patterns. It contains:

  • Application Load Balanced Services

  • Network Load Balanced Services

  • Queue Processing Services

  • Scheduled Tasks (cron jobs)

  • Additional Examples

Application Load Balanced Services

To define an Amazon ECS service that is behind an application load balancer, instantiate one of the following:

  • ApplicationLoadBalancedEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.ApplicationLoadBalancedEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("test"),
        "environment": {
            "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
            "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
        }
    },
    desired_count=2
)
  • ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

load_balanced_fargate_service.target_group.configure_health_check(
    path="/custom-health-path"
)

Instead of providing a cluster you can specify a VPC and CDK will create a new ECS cluster. If you deploy multiple services CDK will only create one cluster per VPC.

You can omit cluster and vpc to let CDK create a new VPC with two AZs and create a cluster inside this VPC.

You can customize the health check for your target group; otherwise it defaults to HTTP over port 80 hitting path /.

Fargate services will use the LATEST platform version by default, but you can override by providing a value for the platformVersion property in the constructor.

Additionally, if more than one application target group are needed, instantiate one of the following:

  • ApplicationMultipleTargetGroupsEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_ec2_service = ApplicationMultipleTargetGroupsEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=256,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    target_groups=[{
        "container_port": 80
    }, {
        "container_port": 90,
        "path_pattern": "a/b/c",
        "priority": 10
    }
    ]
)
  • ApplicationMultipleTargetGroupsFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# One application load balancer with one listener and two target groups.
load_balanced_fargate_service = ApplicationMultipleTargetGroupsFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    target_groups=[{
        "container_port": 80
    }, {
        "container_port": 90,
        "path_pattern": "a/b/c",
        "priority": 10
    }
    ]
)

Network Load Balanced Services

To define an Amazon ECS service that is behind a network load balancer, instantiate one of the following:

  • NetworkLoadBalancedEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_ecs_service = ecs_patterns.NetworkLoadBalancedEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("test"),
        "environment": {
            "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
            "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
        }
    },
    desired_count=2
)
  • NetworkLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
load_balanced_fargate_service = ecs_patterns.NetworkLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

The CDK will create a new Amazon ECS cluster if you specify a VPC and omit cluster. If you deploy multiple services the CDK will only create one cluster per VPC.

If cluster and vpc are omitted, the CDK creates a new VPC with subnets in two Availability Zones and a cluster within this VPC.

Additionally, if more than one network target group is needed, instantiate one of the following:

  • NetworkMultipleTargetGroupsEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_ec2_service = NetworkMultipleTargetGroupsEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=256,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    load_balancers=[{
        "name": "lb1",
        "listeners": [{
            "name": "listener1"
        }
        ]
    }, {
        "name": "lb2",
        "listeners": [{
            "name": "listener2"
        }
        ]
    }
    ],
    target_groups=[{
        "container_port": 80,
        "listener": "listener1"
    }, {
        "container_port": 90,
        "listener": "listener2"
    }
    ]
)
  • NetworkMultipleTargetGroupsFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Two network load balancers, each with their own listener and target group.
load_balanced_fargate_service = NetworkMultipleTargetGroupsFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    },
    load_balancers=[{
        "name": "lb1",
        "listeners": [{
            "name": "listener1"
        }
        ]
    }, {
        "name": "lb2",
        "listeners": [{
            "name": "listener2"
        }
        ]
    }
    ],
    target_groups=[{
        "container_port": 80,
        "listener": "listener1"
    }, {
        "container_port": 90,
        "listener": "listener2"
    }
    ]
)

Queue Processing Services

To define a service that creates a queue and reads from that queue, instantiate one of the following:

  • QueueProcessingEc2Service

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_ec2_service = QueueProcessingEc2Service(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={
        "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
        "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
    },
    queue=queue,
    max_scaling_capacity=5
)
  • QueueProcessingFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={
        "TEST_ENVIRONMENT_VARIABLE1": "test environment variable 1 value",
        "TEST_ENVIRONMENT_VARIABLE2": "test environment variable 2 value"
    },
    queue=queue,
    max_scaling_capacity=5
)

when queue not provided by user, CDK will create a primary queue and a dead letter queue with default redrive policy and attach permission to the task to be able to access the primary queue.

Scheduled Tasks

To define a task that runs periodically, instantiate an ScheduledEc2Task:

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Instantiate an Amazon EC2 Task to run at a scheduled interval
ecs_scheduled_task = ScheduledEc2Task(stack, "ScheduledTask",
    cluster=cluster,
    scheduled_ec2_task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
        "memory_limit_mi_b": 256,
        "environment": {"name": "TRIGGER", "value": "CloudWatch Events"}
    },
    schedule=events.Schedule.expression("rate(1 minute)")
)

Additional Examples

In addition to using the constructs, users can also add logic to customize these constructs:

Add Schedule-Based Auto-Scaling to an ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from aws_cdk.aws_applicationautoscaling import Schedule
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService, ApplicationLoadBalancedFargateServiceProps

load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
    min_capacity=5,
    max_capacity=20
)

scalable_target.scale_on_schedule("DaytimeScaleDown",
    schedule=Schedule.cron(hour="8", minute="0"),
    min_capacity=1
)

scalable_target.scale_on_schedule("EveningRushScaleUp",
    schedule=Schedule.cron(hour="20", minute="0"),
    min_capacity=10
)

Add Metric-Based Auto-Scaling to an ApplicationLoadBalancedFargateService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
from ..application_load_balanced_fargate_service import ApplicationLoadBalancedFargateService

load_balanced_fargate_service = ApplicationLoadBalancedFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=1024,
    desired_count=1,
    cpu=512,
    task_image_options={
        "image": ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
    }
)

scalable_target = load_balanced_fargate_service.service.auto_scale_task_count(
    min_capacity=1,
    max_capacity=20
)

scalable_target.scale_on_cpu_utilization("CpuScaling",
    target_utilization_percent=50
)

scalable_target.scale_on_memory_utilization("MemoryScaling",
    target_utilization_percent=50
)

Set deployment configuration on QueueProcessingService

# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
queue_processing_fargate_service = QueueProcessingFargateService(stack, "Service",
    cluster=cluster,
    memory_limit_mi_b=512,
    image=ecs.ContainerImage.from_registry("test"),
    command=["-c", "4", "amazon.com"],
    enable_logging=False,
    desired_task_count=2,
    environment={},
    queue=queue,
    max_scaling_capacity=5,
    max_healthy_percent=200,
    min_health_percent=66
)