Table Of Contents

Feedback

User Guide

First time using the AWS CLI? See the User Guide for help getting started.

Note: You are viewing the documentation for an older major version of the AWS CLI (version 1).

AWS CLI version 2, the latest major version of AWS CLI, is now stable and recommended for general use. To view this page for the AWS CLI version 2, click here. For more information see the AWS CLI version 2 installation instructions and migration guide.

[ aws . glue ]

get-plan

Description

Gets code to perform a specified mapping.

See also: AWS API Documentation

See 'aws help' for descriptions of global parameters.

Synopsis

  get-plan
--mapping <value>
--source <value>
[--sinks <value>]
[--location <value>]
[--language <value>]
[--additional-plan-options-map <value>]
[--cli-input-json <value>]
[--generate-cli-skeleton <value>]

Options

--mapping (list)

The list of mappings from a source table to target tables.

(structure)

Defines a mapping.

SourceTable -> (string)

The name of the source table.

SourcePath -> (string)

The source path.

SourceType -> (string)

The source type.

TargetTable -> (string)

The target table.

TargetPath -> (string)

The target path.

TargetType -> (string)

The target type.

Shorthand Syntax:

SourceTable=string,SourcePath=string,SourceType=string,TargetTable=string,TargetPath=string,TargetType=string ...

JSON Syntax:

[
  {
    "SourceTable": "string",
    "SourcePath": "string",
    "SourceType": "string",
    "TargetTable": "string",
    "TargetPath": "string",
    "TargetType": "string"
  }
  ...
]

--source (structure)

The source table.

DatabaseName -> (string)

The database in which the table metadata resides.

TableName -> (string)

The name of the table in question.

Shorthand Syntax:

DatabaseName=string,TableName=string

JSON Syntax:

{
  "DatabaseName": "string",
  "TableName": "string"
}

--sinks (list)

The target tables.

(structure)

Specifies a table definition in the AWS Glue Data Catalog.

DatabaseName -> (string)

The database in which the table metadata resides.

TableName -> (string)

The name of the table in question.

Shorthand Syntax:

DatabaseName=string,TableName=string ...

JSON Syntax:

[
  {
    "DatabaseName": "string",
    "TableName": "string"
  }
  ...
]

--location (structure)

The parameters for the mapping.

Jdbc -> (list)

A JDBC location.

(structure)

An argument or property of a node.

Name -> (string)

The name of the argument or property.

Value -> (string)

The value of the argument or property.

Param -> (boolean)

True if the value is used as a parameter.

S3 -> (list)

An Amazon Simple Storage Service (Amazon S3) location.

(structure)

An argument or property of a node.

Name -> (string)

The name of the argument or property.

Value -> (string)

The value of the argument or property.

Param -> (boolean)

True if the value is used as a parameter.

DynamoDB -> (list)

An Amazon DynamoDB table location.

(structure)

An argument or property of a node.

Name -> (string)

The name of the argument or property.

Value -> (string)

The value of the argument or property.

Param -> (boolean)

True if the value is used as a parameter.

Shorthand Syntax:

Jdbc=[{Name=string,Value=string,Param=boolean},{Name=string,Value=string,Param=boolean}],S3=[{Name=string,Value=string,Param=boolean},{Name=string,Value=string,Param=boolean}],DynamoDB=[{Name=string,Value=string,Param=boolean},{Name=string,Value=string,Param=boolean}]

JSON Syntax:

{
  "Jdbc": [
    {
      "Name": "string",
      "Value": "string",
      "Param": true|false
    }
    ...
  ],
  "S3": [
    {
      "Name": "string",
      "Value": "string",
      "Param": true|false
    }
    ...
  ],
  "DynamoDB": [
    {
      "Name": "string",
      "Value": "string",
      "Param": true|false
    }
    ...
  ]
}

--language (string)

The programming language of the code to perform the mapping.

Possible values:

  • PYTHON
  • SCALA

--additional-plan-options-map (map)

A map to hold additional optional key-value parameters.

Currently, these key-value pairs are supported:

  • inferSchema — Specifies whether to set inferSchema to true or false for the default script generated by an AWS Glue job. For example, to set inferSchema to true, pass the following key value pair: --additional-plan-options-map '{"inferSchema":"true"}'

key -> (string)

value -> (string)

Shorthand Syntax:

KeyName1=string,KeyName2=string

JSON Syntax:

{"string": "string"
  ...}

--cli-input-json (string) Performs service operation based on the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton. If other arguments are provided on the command line, the CLI values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally.

--generate-cli-skeleton (string) Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input, prints a sample input JSON that can be used as an argument for --cli-input-json. If provided with the value output, it validates the command inputs and returns a sample output JSON for that command.

See 'aws help' for descriptions of global parameters.

Examples

To get the generated code for mapping data from source tables to target tables

The following get-plan retrieves the generated code for mapping columns from the data source to the data target.

aws glue get-plan --mapping '[ \
    { \
        "SourcePath":"sensorid", \
        "SourceTable":"anything", \
        "SourceType":"int", \
        "TargetPath":"sensorid", \
        "TargetTable":"anything", \
        "TargetType":"int" \
    }, \
    { \
        "SourcePath":"currenttemperature", \
        "SourceTable":"anything", \
        "SourceType":"int", \
        "TargetPath":"currenttemperature", \
        "TargetTable":"anything", \
        "TargetType":"int" \
    }, \
    { \
        "SourcePath":"status", \
        "SourceTable":"anything", \
        "SourceType":"string", \
        "TargetPath":"status", \
        "TargetTable":"anything", \
        "TargetType":"string" \
    }]' \
    --source '{ \
        "DatabaseName":"tempdb", \
        "TableName":"s3-source" \
    }' \
    --sinks '[ \
        { \
            "DatabaseName":"tempdb", \
            "TableName":"my-s3-sink" \
        }]'
    --language "scala"
    --endpoint https://glue.us-east-1.amazonaws.com
    --output "text"

Output:

import com.amazonaws.services.glue.ChoiceOption
import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.MappingSpec
import com.amazonaws.services.glue.ResolveSpec
import com.amazonaws.services.glue.errors.CallSite
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import org.apache.spark.SparkContext
import scala.collection.JavaConverters._

object GlueApp {
  def main(sysArgs: Array[String]) {
    val spark: SparkContext = new SparkContext()
    val glueContext: GlueContext = new GlueContext(spark)
    // @params: [JOB_NAME]
    val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray)
    Job.init(args("JOB_NAME"), glueContext, args.asJava)
    // @type: DataSource
    // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"]
    // @return: datasource0
    // @inputs: []
    val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame()
    // @type: ApplyMapping
    // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"]
    // @return: applymapping1
    // @inputs: [frame = datasource0]
    val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1")
    // @type: SelectFields
    // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"]
    // @return: selectfields2
    // @inputs: [frame = applymapping1]
    val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2")
    // @type: ResolveChoice
    // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"]
    // @return: resolvechoice3
    // @inputs: [frame = selectfields2]
    val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3")
    // @type: DataSink
    // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"]
    // @return: datasink4
    // @inputs: [frame = resolvechoice3]
    val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3)
    Job.commit()
  }
}

For more information, see Editing Scripts in AWS Glue in the AWS Glue Developer Guide.

Output

PythonScript -> (string)

A Python script to perform the mapping.

ScalaCode -> (string)

The Scala code to perform the mapping.