AWS Glue Beispiele mit AWS CLI - AWS Command Line Interface

Diese Dokumentation bezieht sich AWS CLI nur auf Version 1 von. Dokumentation zu Version 2 von finden Sie im Benutzerhandbuch für Version 2. AWS CLI

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

AWS Glue Beispiele mit AWS CLI

Die folgenden Codebeispiele zeigen Ihnen, wie Sie mithilfe von AWS Command Line Interface with Aktionen ausführen und allgemeine Szenarien implementieren AWS Glue.

Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Während Aktionen Ihnen zeigen, wie Sie einzelne Servicefunktionen aufrufen, können Sie Aktionen im Kontext der zugehörigen Szenarien und serviceübergreifenden Beispiele sehen.

Szenarien sind Codebeispiele, die Ihnen zeigen, wie Sie eine bestimmte Aufgabe ausführen können, indem Sie mehrere Funktionen innerhalb desselben Services aufrufen.

Jedes Beispiel enthält einen Link zu GitHub, wo Sie Anweisungen zum Einrichten und Ausführen des Codes im Kontext finden.

Themen

Aktionen

Das folgende Codebeispiel zeigt, wie Sie es verwendenbatch-stop-job-run.

AWS CLI

Um Jobläufe zu beenden

Das folgende batch-stop-job-run Beispiel stoppt die Ausführung eines Auftrags.

aws glue batch-stop-job-run \ --job-name "my-testing-job" \ --job-run-id jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f

Ausgabe:

{ "SuccessfulSubmissions": [ { "JobName": "my-testing-job", "JobRunId": "jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f" } ], "Errors": [], "ResponseMetadata": { "RequestId": "66bd6b90-01db-44ab-95b9-6aeff0e73d88", "HTTPStatusCode": 200, "HTTPHeaders": { "date": "Fri, 16 Oct 2020 20:54:51 GMT", "content-type": "application/x-amz-json-1.1", "content-length": "148", "connection": "keep-alive", "x-amzn-requestid": "66bd6b90-01db-44ab-95b9-6aeff0e73d88" }, "RetryAttempts": 0 } }

Weitere Informationen finden Sie unter Auftragsausführungen im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie BatchStopJobRunin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungcreate-connection.

AWS CLI

Um eine Verbindung für AWS Glue-Datenspeicher herzustellen

Das folgende create-connection Beispiel erstellt eine Verbindung im AWS Glue-Datenkatalog, die Verbindungsinformationen für einen Kafka-Datenspeicher bereitstellt.

aws glue create-connection \ --connection-input '{ \ "Name":"conn-kafka-custom", \ "Description":"kafka connection with ssl to custom kafka", \ "ConnectionType":"KAFKA", \ "ConnectionProperties":{ \ "KAFKA_BOOTSTRAP_SERVERS":"<Kafka-broker-server-url>:<SSL-Port>", \ "KAFKA_SSL_ENABLED":"true", \ "KAFKA_CUSTOM_CERT": "s3://bucket/prefix/cert-file.pem" \ }, \ "PhysicalConnectionRequirements":{ \ "SubnetId":"subnet-1234", \ "SecurityGroupIdList":["sg-1234"], \ "AvailabilityZone":"us-east-1a"} \ }' \ --region us-east-1 --endpoint https://glue.us-east-1.amazonaws.com

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Verbindungen im AWS Glue-Datenkatalog definieren im AWS Glue-Entwicklerhandbuch.

  • Einzelheiten zur API finden Sie CreateConnectionin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungcreate-database.

AWS CLI

So erstellen Sie eine Datenbank

Das folgende create-database Beispiel erstellt eine Datenbank im AWS Glue-Datenkatalog.

aws glue create-database \ --database-input "{\"Name\":\"tempdb\"}" \ --profile my_profile \ --endpoint https://glue.us-east-1.amazonaws.com

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Definieren einer Datenbank in Ihrem Datenkatalog im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie CreateDatabasein der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungcreate-job.

AWS CLI

Einen Auftrag zur Datentransformation erstellen

Im folgenden Beispiel für create-job wird ein Streaming-Job erstellt, der ein in S3 gespeichertes Skript ausführt.

aws glue create-job \ --name my-testing-job \ --role AWSGlueServiceRoleDefault \ --command '{ \ "Name": "gluestreaming", \ "ScriptLocation": "s3://DOC-EXAMPLE-BUCKET/folder/" \ }' \ --region us-east-1 \ --output json \ --default-arguments '{ \ "--job-language":"scala", \ "--class":"GlueApp" \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Inhalt von test_script.scala:

import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }

Ausgabe:

{ "Name": "my-testing-job" }

Weitere Informationen finden Sie unter Authoring Jobs in AWS Glue im AWS Glue Developer Guide.

  • Einzelheiten zur API finden Sie CreateJobin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungcreate-table.

AWS CLI

Beispiel 1: So erstellen Sie eine Tabelle für einen Kinesis-Datenstream

Das folgende create-table Beispiel erstellt eine Tabelle im AWS Glue-Datenkatalog, die einen Kinesis-Datenstrom beschreibt.

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"test-kinesis-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"my-testing-stream", \ "Parameters":{ \ "typeOfData":"kinesis","streamName":"my-testing-stream", \ "kinesisUrl":"https://kinesis.us-east-1.amazonaws.com" \ }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Definieren von Tabellen im AWS Glue-Datenkatalog im AWS Glue-Entwicklerhandbuch.

Beispiel 2: So erstellen Sie eine Tabelle für einen Kafka-Datenspeicher

Das folgende create-table Beispiel erstellt eine Tabelle im AWS Glue-Datenkatalog, die einen Kafka-Datenspeicher beschreibt.

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"test-kafka-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"glue-topic", \ "Parameters":{ \ "typeOfData":"kafka","topicName":"glue-topic", \ "connectionName":"my-kafka-connection" }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.apache.hadoop.hive.serde2.OpenCSVSerde"} \ }, \ "Parameters":{ \ "separatorChar":","} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Definieren von Tabellen im AWS Glue-Datenkatalog im AWS Glue-Entwicklerhandbuch.

Beispiel 3: So erstellen Sie eine Tabelle für einen AWS S3-Datenspeicher

Das folgende create-table Beispiel erstellt eine Tabelle im AWS Glue Data Catalog, die einen AWS Simple Storage Service (AWS S3) -Datenspeicher beschreibt.

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"s3-output", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"s1", "Type":"string"}, \ {"Name":"s2", "Type":"int"}, \ {"Name":"s3", "Type":"string"} ], \ "Location":"s3://bucket-path/", \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Definieren von Tabellen im AWS Glue-Datenkatalog im AWS Glue-Entwicklerhandbuch.

  • Einzelheiten zur API finden Sie CreateTablein der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungdelete-job.

AWS CLI

Einen Auftrag löschen

Das folgende Beispiel für delete-job löscht einen Auftrag, der nicht mehr benötigt wird.

aws glue delete-job \ --job-name my-testing-job

Ausgabe:

{ "JobName": "my-testing-job" }

Weitere Informationen finden Sie unter Arbeiten mit Jobs auf der AWS Glue-Konsole im AWS Glue-Entwicklerhandbuch.

  • Einzelheiten zur API finden Sie DeleteJobin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungget-databases.

AWS CLI

Um die Definitionen einiger oder aller Datenbanken im AWS Glue-Datenkatalog aufzulisten

Das folgende Beispiel für get-databases gibt Informationen über die Datenbanken im Datenkatalog zurück.

aws glue get-databases

Ausgabe:

{ "DatabaseList": [ { "Name": "default", "Description": "Default Hive database", "LocationUri": "file:/spark-warehouse", "CreateTime": 1602084052.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "flights-db", "CreateTime": 1587072847.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "legislators", "CreateTime": 1601415625.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "tempdb", "CreateTime": 1601498566.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" } ] }

Weitere Informationen finden Sie unter Definieren einer Datenbank in Ihrem Datenkatalog im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie GetDatabasesin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungget-job-run.

AWS CLI

Informationen zu einer Auftragsausführung abrufen

Das folgende Beispiel für get-job-run ruft Informationen zu einer Auftragsausführung ab.

aws glue get-job-run \ --job-name "Combine legistators data" \ --run-id jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e

Ausgabe:

{ "JobRun": { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "Combine legistators data", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } }

Weitere Informationen finden Sie unter Auftragsausführungen im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie GetJobRunin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungget-job-runs.

AWS CLI

Informationen über alle Ausführungen eines Auftrags abrufen

Das folgende Beispiel für get-job-runs ruft Informationen zu allen Ausführungen eines Auftrags ab.

aws glue get-job-runs \ --job-name "my-testing-job"

Ausgabe:

{ "JobRuns": [ { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "my-testing-job", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_2", "Attempt": 2, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "JobName": "my-testing-job", "StartedOn": 1602811168.496, "LastModifiedOn": 1602811282.39, "CompletedOn": 1602811282.39, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 021AAB703DB20A2D; S3 Extended Request ID: teZk24Y09TkXzBvMPG502L5VJBhe9DJuWA9/TXtuGOqfByajkfL/Tlqt5JBGdEGpigAqzdMDM/U=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 110, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "Attempt": 1, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f", "JobName": "my-testing-job", "StartedOn": 1602811020.518, "LastModifiedOn": 1602811138.364, "CompletedOn": 1602811138.364, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 2671D37856AE7ABB; S3 Extended Request ID: RLJCJw20brV+PpC6GpORahyF2fp9flB5SSb2bTGPnUSPVizLXRl1PN3QZldb+v1o9qRVktNYbW8=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 113, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } ] }

Weitere Informationen finden Sie unter Auftragsausführungen im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie GetJobRunsin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungget-job.

AWS CLI

Informationen zu einem Auftrag abrufen

Das folgende Beispiel für get-job ruft Informationen zu einem Auftrag ab.

aws glue get-job \ --job-name my-testing-job

Ausgabe:

{ "Job": { "Name": "my-testing-job", "Role": "Glue_DefaultRole", "CreatedOn": 1602805698.167, "LastModifiedOn": 1602805698.167, "ExecutionProperty": { "MaxConcurrentRuns": 1 }, "Command": { "Name": "gluestreaming", "ScriptLocation": "s3://janetst-bucket-01/Scripts/test_script.scala", "PythonVersion": "2" }, "DefaultArguments": { "--class": "GlueApp", "--job-language": "scala" }, "MaxRetries": 0, "AllocatedCapacity": 10, "MaxCapacity": 10.0, "GlueVersion": "1.0" } }

Weitere Informationen finden Sie unter Aufträge im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie GetJobin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungget-plan.

AWS CLI

Um den generierten Code für die Zuordnung von Daten aus Quelltabellen zu Zieltabellen abzurufen

Im Folgenden wird der generierte Code für die Zuordnung von Spalten aus der Datenquelle zum Datenziel get-plan abgerufen.

aws glue get-plan --mapping '[ \ { \ "SourcePath":"sensorid", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"sensorid", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"currenttemperature", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"currenttemperature", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"status", \ "SourceTable":"anything", \ "SourceType":"string", \ "TargetPath":"status", \ "TargetTable":"anything", \ "TargetType":"string" \ }]' \ --source '{ \ "DatabaseName":"tempdb", \ "TableName":"s3-source" \ }' \ --sinks '[ \ { \ "DatabaseName":"tempdb", \ "TableName":"my-s3-sink" \ }]' --language "scala" --endpoint https://glue.us-east-1.amazonaws.com --output "text"

Ausgabe:

import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }

Weitere Informationen finden Sie unter Editing Scripts in AWS Glue im AWS Glue Developer Guide.

  • Einzelheiten zur API finden Sie GetPlanin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungget-tables.

AWS CLI

Die Definitionen einiger oder aller Tabellen in der angegebenen Datenbank auflisten

Das folgende Beispiel für get-tables gibt Informationen zu den Tabellen in der angegebenen Datenbank zurück.

aws glue get-tables --database-name 'tempdb'

Ausgabe:

{ "TableList": [ { "Name": "my-s3-sink", "DatabaseName": "tempdb", "CreateTime": 1602730539.0, "UpdateTime": 1602730539.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/test-s3-output/", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "s3-source", "DatabaseName": "tempdb", "CreateTime": 1602730658.0, "UpdateTime": 1602730658.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/", "Compressed": false, "NumberOfBuckets": 0, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "test-kinesis-input", "DatabaseName": "tempdb", "CreateTime": 1601507001.0, "UpdateTime": 1601507001.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "my-testing-stream", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "Parameters": { "kinesisUrl": "https://kinesis.us-east-1.amazonaws.com", "streamName": "my-testing-stream", "typeOfData": "kinesis" }, "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" } ] }

Weitere Informationen finden Sie unter Definieren von Tabellen im AWS Glue-Datenkatalog im AWS Glue-Entwicklerhandbuch.

  • Einzelheiten zur API finden Sie GetTablesin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungstart-crawler.

AWS CLI

Einen Crawler starten

Das folgende Beispiel für start-crawler startet einen Crawler.

aws glue start-crawler --name my-crawler

Ausgabe:

None

Weitere Informationen finden Sie unter Definieren von Crawlern im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie StartCrawlerin der AWS CLI Befehlsreferenz.

Das folgende Codebeispiel zeigt die Verwendungstart-job-run.

AWS CLI

Die Auftragsausführung starten

Das folgende Beispiel für start-job-run startet die Ausführung eines Auftrags.

aws glue start-job-run \ --job-name my-job

Ausgabe:

{ "JobRunId": "jr_22208b1f44eb5376a60569d4b21dd20fcb8621e1a366b4e7b2494af764b82ded" }

Weitere Informationen finden Sie unter Autorisieren von Aufträgen im Entwicklerhandbuch für AWS Glue.

  • Einzelheiten zur API finden Sie StartJobRunin der AWS CLI Befehlsreferenz.