Weitere AWS-SDK-Beispiele sind im GitHub-Repository Beispiele für AWS Doc SDKs
Beispiele für Amazon Bedrock Agents unter Verwendung von SDK für Python (Boto3)
Die folgenden Codebeispiele zeigen, wie Sie Aktionen durchführen und gängige Szenarien implementieren, indem Sie AWS SDK für Python (Boto3) mit Amazon Bedrock Agents nutzen.
Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Während Aktionen Ihnen zeigen, wie Sie einzelne Servicefunktionen aufrufen, können Sie Aktionen im Kontext der zugehörigen Szenarien anzeigen.
Szenarien sind Codebeispiele, die Ihnen zeigen, wie Sie bestimmte Aufgaben ausführen, indem Sie mehrere Funktionen innerhalb eines Services aufrufen oder mit anderen AWS-Services kombinieren.
Jedes Beispiel enthält einen Link zum vollständigen Quellcode, wo Sie Anweisungen zum Einrichten und Ausführen des Codes im Kodex finden.
Aktionen
Die folgenden Codebeispiele zeigen, wie CreateAgent verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen Sie einen -Agenten.
def create_agent(self, agent_name, foundation_model, role_arn, instruction): """ Creates an agent that orchestrates interactions between foundation models, data sources, software applications, user conversations, and APIs to carry out tasks to help customers. :param agent_name: A name for the agent. :param foundation_model: The foundation model to be used for orchestration by the agent. :param role_arn: The ARN of the IAM role with permissions needed by the agent. :param instruction: Instructions that tell the agent what it should do and how it should interact with users. :return: The response from Amazon Bedrock Agents if successful, otherwise raises an exception. """ try: response = self.client.create_agent( agentName=agent_name, foundationModel=foundation_model, agentResourceRoleArn=role_arn, instruction=instruction, ) except ClientError as e: logger.error(f"Error: Couldn't create agent. Here's why: {e}") raise else: return response["agent"]-
Weitere API-Informationen finden Sie unter CreateAgent in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreateAgentActionGroup verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen einer Agentenaktionsgruppe.
def create_agent_action_group( self, name, description, agent_id, agent_version, function_arn, api_schema ): """ Creates an action group for an agent. An action group defines a set of actions that an agent should carry out for the customer. :param name: The name to give the action group. :param description: The description of the action group. :param agent_id: The unique identifier of the agent for which to create the action group. :param agent_version: The version of the agent for which to create the action group. :param function_arn: The ARN of the Lambda function containing the business logic that is carried out upon invoking the action. :param api_schema: Contains the OpenAPI schema for the action group. :return: Details about the action group that was created. """ try: response = self.client.create_agent_action_group( actionGroupName=name, description=description, agentId=agent_id, agentVersion=agent_version, actionGroupExecutor={"lambda": function_arn}, apiSchema={"payload": api_schema}, ) agent_action_group = response["agentActionGroup"] except ClientError as e: logger.error(f"Error: Couldn't create agent action group. Here's why: {e}") raise else: return agent_action_group-
Weitere API-Informationen finden Sie unter CreateAgentActionGroup in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreateAgentAlias verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen Sie einen Alias für einen Agenten.
def create_agent_alias(self, name, agent_id): """ Creates an alias of an agent that can be used to deploy the agent. :param name: The name of the alias. :param agent_id: The unique identifier of the agent. :return: Details about the alias that was created. """ try: response = self.client.create_agent_alias( agentAliasName=name, agentId=agent_id ) agent_alias = response["agentAlias"] except ClientError as e: logger.error(f"Couldn't create agent alias. {e}") raise else: return agent_alias-
Weitere API-Informationen finden Sie unter CreateAgentAlias in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreateFlow verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen eines Amazon-Bedrock-Flow.
def create_flow(client, flow_name, flow_description, role_arn, flow_def): """ Creates an Amazon Bedrock flow. Args: client: Amazon Bedrock agent boto3 client. flow_name (str): The name for the new flow. role_arn (str): The ARN for the IAM role that use flow uses. flow_def (json): The JSON definition of the flow that you want to create. Returns: dict: The response from CreateFlow. """ try: logger.info("Creating flow: %s.", flow_name) response = client.create_flow( name=flow_name, description=flow_description, executionRoleArn=role_arn, definition=flow_def ) logger.info("Successfully created flow: %s. ID: %s", flow_name, {response['id']}) return response except ClientError as e: logger.exception("Client error creating flow: %s", {str(e)}) raise except Exception as e: logger.exception("Unexepcted error creating flow: %s", {str(e)}) raise-
Weitere API-Informationen finden Sie unter CreateFlow in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreateFlowAlias verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen Sie einen Alias für einen Amazon-Bedrock-Flow.
def create_flow_alias(client, flow_id, flow_version, name, description): """ Creates an alias for an Amazon Bedrock flow. Args: client: bedrock agent boto3 client. flow_id (str): The identifier of the flow. Returns: str: The ID for the flow alias. """ try: logger.info("Creating flow alias for flow: %s.", flow_id) response = client.create_flow_alias( flowIdentifier=flow_id, name=name, description=description, routingConfiguration=[ { "flowVersion": flow_version } ] ) logger.info("Successfully created flow alias for %s.", flow_id) return response['id'] except ClientError as e: logging.exception("Client error creating alias for flow: %s - %s", flow_id, str(e)) raise except Exception as e: logging.exception("Unexpected error creating alias for flow : %s - %s", flow_id, str(e)) raise-
Weitere API-Informationen finden Sie unter CreateFlowAlias in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreateFlowVersion verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen Sie eine Version eines Amazon Bedrock-Flows.
def create_flow_version(client, flow_id, description): """ Creates a version of an Amazon Bedrock flow. Args: client: Amazon Bedrock agent boto3 client. flow_id (str): The identifier of the flow. description (str) : A description for the flow. Returns: str: The version for the flow. """ try: logger.info("Creating flow version for flow: %s.", flow_id) # Call CreateFlowVersion operation response = client.create_flow_version( flowIdentifier=flow_id, description=description ) logging.info("Successfully created flow version %s for flow %s.", response['version'], flow_id) return response['version'] except ClientError as e: logging.exception("Client error creating flow: %s", str(e)) raise except Exception as e: logging.exception("Unexpected error creating flow : %s", str(e)) raise-
Weitere API-Informationen finden Sie unter CreateFlowVersion in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreateKnowledgeBase verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen einer Amazon-Bedrock-Wissensdatenbank.
def create_knowledge_base(bedrock_agent_client, name, role_arn, description=None): """ Creates a new knowledge base. Args: bedrock_agent_client: The Boto3 Bedrock Agent client. name (str): The name of the knowledge base. role_arn (str): The ARN of the IAM role that the knowledge base assumes to access resources. description (str, optional): A description of the knowledge base. Returns: dict: The details of the created knowledge base. """ try: kwargs = { "name": name, "roleArn": role_arn, "knowledgeBaseConfiguration": { "type": "VECTOR", "vectorKnowledgeBaseConfiguration": { "embeddingModelArn": "arn:aws:bedrock:us-east-1::foundation-model/amazon.titan-embed-text-v1" } }, "storageConfiguration": { "type": "OPENSEARCH_SERVERLESS", # Note: You will need to create an OpenSearch Serverless collection first and replace this ARN # with your actual collection ARN from the OpenSearch console. If you use the console instead, # you can use the quick-create flow to have Knowledge Bases create the collection for you. "opensearchServerlessConfiguration": { "collectionArn": "arn:aws:aoss:us-east-1::123456789012:collection/abcdefgh12345678defgh", "fieldMapping": { "metadataField": "metadata", "textField": "text", "vectorField": "vector" }, "vectorIndexName": "test-uuid" }, }, "clientToken": "test-client-token-" + str(uuid.uuid4()) } if description: kwargs["description"] = description response = bedrock_agent_client.create_knowledge_base(**kwargs) logger.info("Created knowledge base with ID: %s", response["knowledgeBase"]["knowledgeBaseId"]) return response["knowledgeBase"] except ClientError as err: logger.error( "Couldn't create knowledge base. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise-
Weitere API-Informationen finden Sie unter CreateKnowledgeBase in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreatePrompt verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen Sie einen von Amazon Bedrock verwalteten Prompt.
def create_prompt(client, prompt_name, prompt_description, prompt_template, model_id=None): """ Creates an Amazon Bedrock managed prompt. Args: client: Amazon Bedrock Agent boto3 client. prompt_name (str): The name for the new prompt. prompt_description (str): The description for the new prompt. prompt_template (str): The template for the prompt. model_id (str, optional): The model ID to associate with the prompt. Returns: dict: The response from CreatePrompt. """ try: logger.info("Creating prompt: %s.", prompt_name) # Create a variant with the template variant = { "name": "default", "templateType": "TEXT", "templateConfiguration": { "text": { "text": prompt_template, "inputVariables": [] } } } # Extract input variables from the template # Look for patterns like {{variable_name}} variables = re.findall(r'{{(.*?)}}', prompt_template) for var in variables: variant["templateConfiguration"]["text"]["inputVariables"].append({"name": var.strip()}) # Add model ID if provided if model_id: variant["modelId"] = model_id # Create the prompt with the variant create_params = { 'name': prompt_name, 'description': prompt_description, 'variants': [variant] } response = client.create_prompt(**create_params) logger.info("Successfully created prompt: %s. ID: %s", prompt_name, response['id']) return response except ClientError as e: logger.exception("Client error creating prompt: %s", str(e)) raise except Exception as e: logger.exception("Unexpected error creating prompt: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter CreatePrompt in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie CreatePromptVersion verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen Sie eine Version eines von Amazon Bedrock verwalteten Prompts.
def create_prompt_version(client, prompt_id, description=None): """ Creates a version of an Amazon Bedrock managed prompt. Args: client: Amazon Bedrock Agent boto3 client. prompt_id (str): The identifier of the prompt to create a version for. description (str, optional): A description for the version. Returns: dict: The response from CreatePromptVersion. """ try: logger.info("Creating version for prompt ID: %s.", prompt_id) create_params = { 'promptIdentifier': prompt_id } if description: create_params['description'] = description response = client.create_prompt_version(**create_params) logger.info("Successfully created prompt version: %s", response['version']) logger.info("Prompt version ARN: %s", response['arn']) return response except ClientError as e: logger.exception("Client error creating prompt version: %s", str(e)) raise except Exception as e: logger.exception("Unexpected error creating prompt version: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter CreatePromptVersion in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie DeleteAgent verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Löschen Sie einen Agenten.
def delete_agent(self, agent_id): """ Deletes an Amazon Bedrock agent. :param agent_id: The unique identifier of the agent to delete. :return: The response from Amazon Bedrock Agents if successful, otherwise raises an exception. """ try: response = self.client.delete_agent( agentId=agent_id, skipResourceInUseCheck=False ) except ClientError as e: logger.error(f"Couldn't delete agent. {e}") raise else: return response-
Weitere API-Informationen finden Sie unter DeleteAgent in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie DeleteAgentAlias verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Löschen des Alias eines Agenten.
def delete_agent_alias(self, agent_id, agent_alias_id): """ Deletes an alias of an Amazon Bedrock agent. :param agent_id: The unique identifier of the agent that the alias belongs to. :param agent_alias_id: The unique identifier of the alias to delete. :return: The response from Amazon Bedrock Agents if successful, otherwise raises an exception. """ try: response = self.client.delete_agent_alias( agentId=agent_id, agentAliasId=agent_alias_id ) except ClientError as e: logger.error(f"Couldn't delete agent alias. {e}") raise else: return response-
Weitere API-Informationen finden Sie unter DeleteAgentAlias in API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie DeleteFlow verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Löschen Sie einen Amazon Bedrock-Flow.
def delete_flow(client, flow_id): """ Deletes an Amazon Bedrock flow. Args: client: Amazon Bedrock agent boto3 client. flow_id (str): The identifier of the flow that you want to delete. Returns: dict: The response from the DeleteFLow operation. """ try: logger.info("Deleting flow ID: %s.", flow_id) # Call DeleteFlow operation response = client.delete_flow( flowIdentifier=flow_id, skipResourceInUseCheck=True ) logger.info("Finished deleting flow ID: %s", flow_id) return response except ClientError as e: logger.exception("Client error deleting flow: %s", {str(e)}) raise except Exception as e: logger.exception("Unexepcted error deleting flow: %s", {str(e)}) raise-
Weitere API-Informationen finden Sie unter DeleteFlow in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie DeleteFlowAlias verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Löschen Sie einen Alias für einen Amazon Bedrock-Flow.
def delete_flow_alias(client, flow_id, flow_alias_id): """ Deletes an Amazon Bedrock flow alias. Args: client: bedrock agent boto3 client. flow_id (str): The identifier of the flow. Returns: dict: The response from the call to DetectFLowAlias """ try: logger.info("Deleting flow alias %s for flow: %s.", flow_alias_id, flow_id) # Delete the flow alias. response = client.delete_flow_alias( aliasIdentifier=flow_alias_id, flowIdentifier=flow_id ) logging.info("Successfully deleted flow version for %s.", flow_id) return response except ClientError as e: logging.exception("Client error deleting flow version: %s", str(e)) raise except Exception as e: logging.exception("Unexpected deleting flow version: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter DeleteFlowAlias in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie DeleteFlowVersion verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Löschen Sie eine Version eines Amazon Bedrock-Flows.
def delete_flow_version(client, flow_id, flow_version): """ Deletes a version of an Amazon Bedrock flow. Args: client: Amazon Bedrock agent boto3 client. flow_id (str): The identifier of the flow. Returns: dict: The response from DeleteFlowVersion. """ try: logger.info("Deleting flow version %s for flow: %s.",flow_version, flow_id) # Call DeleteFlowVersion operation response = client.delete_flow_version( flowIdentifier=flow_id, flowVersion=flow_version ) logging.info("Successfully deleted flow version %s for %s.", flow_version, flow_id) return response except ClientError as e: logging.exception("Client error deleting flow version: %s ", str(e)) raise except Exception as e: logging.exception("Unexpected deleting flow version: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter DeleteFlowVersion in API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie DeleteKnowledgeBase verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Löschen Sie eine Amazon-Bedrock-Wissensdatenbank.
def delete_knowledge_base(bedrock_agent_client, knowledge_base_id): """ Deletes a knowledge base. Args: bedrock_agent_client: The Boto3 Bedrock Agent client. knowledge_base_id (str): The ID of the knowledge base to delete. Returns: bool: True if the deletion was successful. """ try: bedrock_agent_client.delete_knowledge_base( knowledgeBaseId=knowledge_base_id ) logger.info("Deleted knowledge base: %s", knowledge_base_id) return True except ClientError as err: logger.error( "Couldn't delete knowledge base %s. Here's why: %s: %s", knowledge_base_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise-
Weitere API-Informationen finden Sie unter DeleteKnowledgeBase in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie DeletePrompt verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Löschen Sie einen von Amazon Bedrock verwalteten Prompt.
def delete_prompt(client, prompt_id): """ Deletes an Amazon Bedrock managed prompt. Args: client: Amazon Bedrock Agent boto3 client. prompt_id (str): The identifier of the prompt that you want to delete. Returns: dict: The response from the DeletePrompt operation. """ try: logger.info("Deleting prompt ID: %s.", prompt_id) response = client.delete_prompt( promptIdentifier=prompt_id ) logger.info("Finished deleting prompt ID: %s", prompt_id) return response except ClientError as e: logger.exception("Client error deleting prompt: %s", str(e)) raise except Exception as e: logger.exception("Unexpected error deleting prompt: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter DeletePrompt in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie GetAgent verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Rufen Sie einen Agenten ab.
def get_agent(self, agent_id, log_error=True): """ Gets information about an agent. :param agent_id: The unique identifier of the agent. :param log_error: Whether to log any errors that occur when getting the agent. If True, errors will be logged to the logger. If False, errors will still be raised, but not logged. :return: The information about the requested agent. """ try: response = self.client.get_agent(agentId=agent_id) agent = response["agent"] except ClientError as e: if log_error: logger.error(f"Couldn't get agent {agent_id}. {e}") raise else: return agent-
Weitere API-Informationen finden Sie unter GetAgent in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie GetFlow verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Rufen Sie einen Amazon-Bedrock-Flow ab.
def get_flow(client, flow_id): """ Gets an Amazon Bedrock flow. Args: client: bedrock agent boto3 client. flow_id (str): The identifier of the flow that you want to get. Returns: dict: The response from the GetFlow operation. """ try: logger.info("Getting flow ID: %s.", flow_id) # Call GetFlow operation. response = client.get_flow( flowIdentifier=flow_id ) logger.info("Retrieved flow ID: %s. Name: %s", flow_id, response['name']) return response except ClientError as e: logger.exception("Client error getting flow: %s", {str(e)}) raise except Exception as e: logger.exception("Unexepcted error getting flow: %s", {str(e)}) raise-
Weitere API-Informationen finden Sie unter GetFlow in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie GetFlowVersion verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Rufen Sie eine Version eines Amazon-Bedrock-Flows ab.
def get_flow_version(client, flow_id, flow_version): """ Gets information about a version of an Amazon Bedrock flow. Args: client: Amazon Bedrock agent boto3 client. flow_id (str): The identifier of the flow. flow_version (str): The flow version of the flow. Returns: dict: The response from the call to GetFlowVersion. """ try: logger.info("Deleting flow version for flow: %s.", flow_id) # Call GetFlowVersion operation response = client.get_flow_version( flowIdentifier=flow_id, flowVersion=flow_version ) logging.info("Successfully got flow version %s information for flow %s.", flow_version, flow_id) return response except ClientError as e: logging.exception("Client error getting flow version: %s", str(e)) raise except Exception as e: logging.exception("Unexpected error getting flow version: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter GetFlowVersion in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie GetKnowledgeBase verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Rufen Sie eine Amazon-Bedrock-Wissensdatenbank ab.
def get_knowledge_base(bedrock_agent_client, knowledge_base_id): """ Gets details about a specific knowledge base. Args: bedrock_agent_client: The Boto3 Bedrock Agent client. knowledge_base_id (str): The ID of the knowledge base. Returns: dict: The details of the knowledge base. """ try: response = bedrock_agent_client.get_knowledge_base( knowledgeBaseId=knowledge_base_id ) logger.info("Retrieved knowledge base: %s", knowledge_base_id) return response["knowledgeBase"] except ClientError as err: logger.error( "Couldn't get knowledge base %s. Here's why: %s: %s", knowledge_base_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise-
Weitere API-Informationen finden Sie unter GetKnowledgeBase in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie GetPrompt verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Rufen Sie einen von Amazon Bedrock verwalteten Prompt ab.
def get_prompt(client, prompt_id): """ Gets an Amazon Bedrock managed prompt. Args: client: Amazon Bedrock Agent boto3 client. prompt_id (str): The identifier of the prompt that you want to get. Returns: dict: The response from the GetPrompt operation. """ try: logger.info("Getting prompt ID: %s.", prompt_id) response = client.get_prompt( promptIdentifier=prompt_id ) logger.info("Retrieved prompt ID: %s. Name: %s", prompt_id, response['name']) return response except ClientError as e: logger.exception("Client error getting prompt: %s", str(e)) raise except Exception as e: logger.exception("Unexpected error getting prompt: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter GetPrompt in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListAgentActionGroups verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Listen Sie die Aktionsgruppen für einen Agenten auf.
def list_agent_action_groups(self, agent_id, agent_version): """ List the action groups for a version of an Amazon Bedrock Agent. :param agent_id: The unique identifier of the agent. :param agent_version: The version of the agent. :return: The list of action group summaries for the version of the agent. """ try: action_groups = [] paginator = self.client.get_paginator("list_agent_action_groups") for page in paginator.paginate( agentId=agent_id, agentVersion=agent_version, PaginationConfig={"PageSize": 10}, ): action_groups.extend(page["actionGroupSummaries"]) except ClientError as e: logger.error(f"Couldn't list action groups. {e}") raise else: return action_groups-
Weitere API-Informationen finden Sie unter ListAgentActionGroups in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListAgentKnowledgeBases verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Auflisten der einem Agenten zugeordneten Wissensdatenbanken.
def list_agent_knowledge_bases(self, agent_id, agent_version): """ List the knowledge bases associated with a version of an Amazon Bedrock Agent. :param agent_id: The unique identifier of the agent. :param agent_version: The version of the agent. :return: The list of knowledge base summaries for the version of the agent. """ try: knowledge_bases = [] paginator = self.client.get_paginator("list_agent_knowledge_bases") for page in paginator.paginate( agentId=agent_id, agentVersion=agent_version, PaginationConfig={"PageSize": 10}, ): knowledge_bases.extend(page["agentKnowledgeBaseSummaries"]) except ClientError as e: logger.error(f"Couldn't list knowledge bases. {e}") raise else: return knowledge_bases-
Weitere API-Informationen finden Sie unter ListAgentKnowledgeBases in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListAgents verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Listen Sie die Agenten auf, die zu einem Konto gehören.
def list_agents(self): """ List the available Amazon Bedrock Agents. :return: The list of available bedrock agents. """ try: all_agents = [] paginator = self.client.get_paginator("list_agents") for page in paginator.paginate(PaginationConfig={"PageSize": 10}): all_agents.extend(page["agentSummaries"]) except ClientError as e: logger.error(f"Couldn't list agents. {e}") raise else: return all_agents-
Weitere API-Informationen finden Sie unter ListAgents in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListFlowAliases verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Listet die Aliasse für einen Amazon-Bedrock-Flow auf.
def list_flow_aliases(client, flow_id): """ Lists the aliases of an Amazon Bedrock flow. Args: client: bedrock agent boto3 client. flow_id (str): The identifier of the flow. Returns: dict: The response from ListFlowAliases. """ try: finished = False logger.info("Listing flow aliases for flow: %s.", flow_id) print(f"Aliases for flow: {flow_id}") response = client.list_flow_aliases( flowIdentifier=flow_id, maxResults=10) while finished is False: for alias in response['flowAliasSummaries']: print(f"Alias Name: {alias['name']}") print(f"ID: {alias['id']}") print(f"Description: {alias.get('description', 'No description')}\n") if 'nextToken' in response: next_token = response['nextToken'] response = client.list_flow_aliases(maxResults=10, nextToken=next_token) else: finished = True logging.info("Successfully listed flow aliases for flow %s.", flow_id) return response except ClientError as e: logging.exception("Client error listing flow aliases: %s", str(e)) raise except Exception as e: logging.exception("Unexpected error listing flow aliases: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter ListFlowAliases in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListFlowVersions verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Listet die Versionen eines Amazon-Bedrock-Flows auf.
def list_flow_versions(client, flow_id): """ Lists the versions of an Amazon Bedrock flow. Args: client: Amazon bedrock agent boto3 client. flow_id (str): The identifier of the flow. Returns: dict: The response from ListFlowVersions. """ try: finished = False logger.info("Listing flow versions for flow: %s.", flow_id) response = client.list_flow_versions( flowIdentifier=flow_id, maxResults=10) while finished is False: print(f"Versions for flow:{flow_id}") for version in response['flowVersionSummaries']: print(f"Version: {version['version']}") print(f"Status: {version['status']}\n") if 'nextToken' in response: next_token = response['nextToken'] response = client.list_flow_versions(maxResults=10, nextToken=next_token) else: finished = True logging.info("Successfully listed flow versions for flow %s.", flow_id) return response except ClientError as e: logging.exception("Client error listing flow versions: %s", str(e)) raise except Exception as e: logging.exception("Unexpected error listing flow versions: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter ListFlowVersions in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListFlows verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Listet Amazon-Bedrock-Flows auf.
def list_flows(client): """ Lists versions of an Amazon Bedrock flow. Args: client: Amazon Bedrock agent boto3 client. flow_id (str): The identifier of the flow. Returns: Nothing. """ try: finished = False logger.info("Listing flows:") response = client.list_flows(maxResults=10) while finished is False: for flow in response['flowSummaries']: print(f"ID: {flow['id']}") print(f"Name: {flow['name']}") print( f"Description: {flow.get('description', 'No description')}") print(f"Latest version: {flow['version']}") print(f"Status: {flow['status']}\n") if 'nextToken' in response: next_token = response['nextToken'] response = client.list_flows(maxResults=10, nextToken=next_token) else: finished = True logging.info("Successfully listed flows.") except ClientError as e: logging.exception("Client error listing flow versions: %s", str(e)) raise except Exception as e: logging.exception("Unexpected error listing flow versions: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter ListFlows in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListKnowledgeBases verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Listet die Amazon-Bedrock-Wissensdatenbanken auf.
def list_knowledge_bases(bedrock_agent_client, max_results=None): """ Lists the knowledge bases in your AWS account. Args: bedrock_agent_client: The Boto3 Bedrock Agent client. max_results (int, optional): The maximum number of knowledge bases to return. Returns: list: A list of knowledge base details. """ try: kwargs = {} if max_results is not None: kwargs["maxResults"] = max_results # Initialize an empty list to store all knowledge bases all_knowledge_bases = [] # Use paginator to handle pagination automatically paginator = bedrock_agent_client.get_paginator('list_knowledge_bases') page_iterator = paginator.paginate(**kwargs) # Iterate through each page of results for page in page_iterator: all_knowledge_bases.extend(page.get('knowledgeBaseSummaries', [])) logger.info("Found %s knowledge bases.", len(all_knowledge_bases)) return all_knowledge_bases except ClientError as err: logger.error( "Couldn't list knowledge bases. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise-
Weitere API-Informationen finden Sie unter ListKnowledgeBases in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie ListPrompts verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Listet von Amazon Bedrock verwaltete Prompts auf.
def list_prompts(client, max_results=10): """ Lists Amazon Bedrock managed prompts. Args: client: Amazon Bedrock Agent boto3 client. max_results (int): Maximum number of results to return per page. Returns: list: A list of prompt summaries. """ try: logger.info("Listing prompts:") # Create a paginator for the list_prompts operation paginator = client.get_paginator('list_prompts') # Create the pagination parameters pagination_config = { 'maxResults': max_results } # Initialize an empty list to store all prompts all_prompts = [] # Iterate through all pages for page in paginator.paginate(**pagination_config): all_prompts.extend(page.get('promptSummaries', [])) logger.info("Successfully listed %s prompts.", len(all_prompts)) return all_prompts except ClientError as e: logger.exception("Client error listing prompts: %s", str(e)) raise except Exception as e: logger.exception("Unexpected error listing prompts: %s", str(e)) raise-
Weitere API-Informationen finden Sie unter ListPrompts in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie PrepareAgent verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Bereiten Sie einen Agenten auf interne Tests vor.
def prepare_agent(self, agent_id): """ Creates a DRAFT version of the agent that can be used for internal testing. :param agent_id: The unique identifier of the agent to prepare. :return: The response from Amazon Bedrock Agents if successful, otherwise raises an exception. """ try: prepared_agent_details = self.client.prepare_agent(agentId=agent_id) except ClientError as e: logger.error(f"Couldn't prepare agent. {e}") raise else: return prepared_agent_details-
Weitere API-Informationen finden Sie unter PrepareAgent in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie PrepareFlow verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Vorbereiten eines Amazon-Bedrock-Flows.
def prepare_flow(client, flow_id): """ Prepares an Amazon Bedrock Flow. Args: client: Amazon Bedrock agent boto3 client. flow_id (str): The identifier of the flow that you want to prepare. Returns: str: The status of the flow preparation """ try: # Prepare the flow. logger.info("Preparing flow ID: %s", flow_id) response = client.prepare_flow( flowIdentifier=flow_id ) status = response.get('status') while status == "Preparing": logger.info("Preparing flow ID: %s. Status %s", flow_id, status) sleep(5) response = client.get_flow( flowIdentifier=flow_id ) status = response.get('status') print(f"Flow Status: {status}") if status == "Prepared": logger.info("Finished preparing flow ID: %s. Status %s", flow_id, status) else: logger.warning("flow ID: %s not prepared. Status %s", flow_id, status) return status except ClientError as e: logger.exception("Client error preparing flow: %s", {str(e)}) raise except Exception as e: logger.exception("Unexepcted error preparing flow: %s", {str(e)}) raise-
Weitere API-Informationen finden Sie unter PrepareFlow in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie UpdateFlow verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Aktualisieren eines Amazon-Bedrock-Flows.
def update_flow(client, flow_id, flow_name, flow_description, role_arn, flow_def): """ Updates an Amazon Bedrock flow. Args: client: bedrock agent boto3 client. flow_id (str): The ID for the flow that you want to update. flow_name (str): The name for the flow. role_arn (str): The ARN for the IAM role that use flow uses. flow_def (json): The JSON definition of the flow that you want to create. Returns: dict: Flow information if successful. """ try: logger.info("Updating flow: %s.", flow_id) response = client.update_flow( flowIdentifier=flow_id, name=flow_name, description=flow_description, executionRoleArn=role_arn, definition=flow_def ) logger.info("Successfully updated flow: %s. ID: %s", flow_name, {response['id']}) return response except ClientError as e: logger.exception("Client error updating flow: %s", {str(e)}) raise except Exception as e: logger.exception("Unexepcted error updating flow: %s", {str(e)}) raise-
Weitere API-Informationen finden Sie unter UpdateFlow in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie UpdateFlowAlias verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Aktualisieren des Alias eines Amazon-Bedrock-Flows.
def update_flow_alias(client, flow_id, alias_id, flow_version, name, description): """ Updates an alias for an Amazon Bedrock flow. Args: client: bedrock agent boto3 client. flow_id (str): The identifier of the flow. Returns: str: The response from UpdateFlowAlias. """ try: logger.info("Updating flow alias %s for flow: %s.", alias_id, flow_id) response = client.update_flow_alias( aliasIdentifier=alias_id, flowIdentifier=flow_id, name=name, description=description, routingConfiguration=[ { "flowVersion": flow_version } ] ) logger.info("Successfully updated flow alias %s for %s.", alias_id, flow_id) return response except ClientError as e: logging.exception("Client error updating alias %s for flow: %s - %s", alias_id, flow_id, str(e)) raise except Exception as e: logging.exception("Unexpected error updating alias %s for flow : %s - %s", alias_id, flow_id, str(e)) raise-
Weitere API-Informationen finden Sie unter UpdateFlowAlias in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Die folgenden Codebeispiele zeigen, wie UpdateKnowledgeBase verwendet wird.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Aktualisieren einer Amazon-Bedrock-Wissensdatenbank.
def update_knowledge_base(bedrock_agent_client, knowledge_base_id, name=None, description=None, role_arn=None): """ Updates an existing knowledge base. Args: bedrock_agent_client: The Boto3 Bedrock Agent client. knowledge_base_id (str): The ID of the knowledge base to update. name (str, optional): The new name for the knowledge base. description (str, optional): The new description for the knowledge base. role_arn (str, optional): The new IAM role ARN for the knowledge base. Returns: dict: The details of the updated knowledge base. """ try: kwargs = { "knowledgeBaseId": knowledge_base_id, "knowledgeBaseConfiguration": { "type": "VECTOR", "vectorKnowledgeBaseConfiguration": { "embeddingModelArn": "arn:aws:bedrock:us-east-1::foundation-model/amazon.titan-embed-text-v1" } } } if name: kwargs["name"] = name if description: kwargs["description"] = description if role_arn: kwargs["roleArn"] = role_arn response = bedrock_agent_client.update_knowledge_base(**kwargs) logger.info("Updated knowledge base: %s", knowledge_base_id) return response["knowledgeBase"] except ClientError as err: logger.error( "Couldn't update knowledge base %s. Here's why: %s: %s", knowledge_base_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise-
Weitere API-Informationen finden Sie unter UpdateKnowledgeBase in der API-Referenz zum AWS-SDK für Python (Boto3).
-
Szenarien
Wie das aussehen kann, sehen Sie am nachfolgenden Beispielcode:
Erstellen einer Ausführungsrolle für den Flow.
Erstellen Sie den Flow.
Stellen Sie den vollständig konfigurierten Flow bereit.
Rufen Sie den Flow mit vom Benutzer bereitgestellten Prompts auf.
Löschen aller erstellten Ressourcen.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellt eine Musik-Playlist basierend auf dem vom Benutzenden angegebenen Genre und der Anzahl der Songs.
from datetime import datetime import logging import boto3 from botocore.exceptions import ClientError from roles import create_flow_role, delete_flow_role, update_role_policy from flow import create_flow, prepare_flow, delete_flow from run_flow import run_playlist_flow from flow_version import create_flow_version, delete_flow_version from flow_alias import create_flow_alias, delete_flow_alias logging.basicConfig( level=logging.INFO ) logger = logging.getLogger(__name__) def create_input_node(name): """ Creates an input node configuration for an Amazon Bedrock flow. The input node serves as the entry point for the flow and defines the initial document structure that will be passed to subsequent nodes. Args: name (str): The name of the input node. Returns: dict: The input node configuration. """ return { "type": "Input", "name": name, "outputs": [ { "name": "document", "type": "Object" } ] } def create_prompt_node(name, model_id): """ Creates a prompt node configuration for a Bedrock flow that generates music playlists. The prompt node defines an inline prompt template that creates a music playlist based on a specified genre and number of songs. The prompt uses two variables that are mapped from the input JSON object: - {{genre}}: The genre of music to create a playlist for - {{number}}: The number of songs to include in the playlist Args: name (str): The name of the prompt node. model_id (str): The identifier of the foundation model to use for the prompt. Returns: dict: The prompt node. """ return { "type": "Prompt", "name": name, "configuration": { "prompt": { "sourceConfiguration": { "inline": { "modelId": model_id, "templateType": "TEXT", "inferenceConfiguration": { "text": { "temperature": 0.8 } }, "templateConfiguration": { "text": { "text": "Make me a {{genre}} playlist consisting of the following number of songs: {{number}}." } } } } } }, "inputs": [ { "name": "genre", "type": "String", "expression": "$.data.genre" }, { "name": "number", "type": "Number", "expression": "$.data.number" } ], "outputs": [ { "name": "modelCompletion", "type": "String" } ] } def create_output_node(name): """ Creates an output node configuration for a Bedrock flow. The output node validates that the output from the last node is a string and returns it unmodified. The input name must be "document". Args: name (str): The name of the output node. Returns: dict: The output node configuration containing the output node: """ return { "type": "Output", "name": name, "inputs": [ { "name": "document", "type": "String", "expression": "$.data" } ] } def create_playlist_flow(client, flow_name, flow_description, role_arn, prompt_model_id): """ Creates the playlist generator flow. Args: client: bedrock agent boto3 client. role_arn (str): Name for the new IAM role. prompt_model_id (str): The id of the model to use in the prompt node. Returns: dict: The response from the create_flow operation. """ input_node = create_input_node("FlowInput") prompt_node = create_prompt_node("MakePlaylist", prompt_model_id) output_node = create_output_node("FlowOutput") # Create connections between the nodes connections = [] # First, create connections between the output of the flow # input node and each input of the prompt node. for prompt_node_input in prompt_node["inputs"]: connections.append( { "name": "_".join([input_node["name"], prompt_node["name"], prompt_node_input["name"]]), "source": input_node["name"], "target": prompt_node["name"], "type": "Data", "configuration": { "data": { "sourceOutput": input_node["outputs"][0]["name"], "targetInput": prompt_node_input["name"] } } } ) # Then, create a connection between the output of the prompt node and the input of the flow output node connections.append( { "name": "_".join([prompt_node["name"], output_node["name"]]), "source": prompt_node["name"], "target": output_node["name"], "type": "Data", "configuration": { "data": { "sourceOutput": prompt_node["outputs"][0]["name"], "targetInput": output_node["inputs"][0]["name"] } } } ) flow_def = { "nodes": [input_node, prompt_node, output_node], "connections": connections } # Create the flow. response = create_flow( client, flow_name, flow_description, role_arn, flow_def) return response def get_model_arn(client, model_id): """ Gets the Amazon Resource Name (ARN) for a model. Args: client (str): Amazon Bedrock boto3 client. model_id (str): The id of the model. Returns: str: The ARN of the model. """ try: # Call GetFoundationModelDetails operation response = client.get_foundation_model(modelIdentifier=model_id) # Extract model ARN from the response model_arn = response['modelDetails']['modelArn'] return model_arn except ClientError as e: logger.exception("Client error getting model ARN: %s", {str(e)}) raise except Exception as e: logger.exception("Unexpected error getting model ARN: %s", {str(e)}) raise def prepare_flow_version_and_alias(bedrock_agent_client, flow_id): """ Prepares the flow and then creates a flow version and flow alias. Args: bedrock_agent_client: Amazon Bedrock Agent boto3 client. flowd_id (str): The ID of the flow that you want to prepare. Returns: The flow_version and flow_alias. """ status = prepare_flow(bedrock_agent_client, flow_id) flow_version = None flow_alias = None if status == 'Prepared': # Create the flow version and alias. flow_version = create_flow_version(bedrock_agent_client, flow_id, f"flow version for flow {flow_id}.") flow_alias = create_flow_alias(bedrock_agent_client, flow_id, flow_version, "latest", f"Alias for flow {flow_id}, version {flow_version}") return flow_version, flow_alias def delete_role_resources(bedrock_agent_client, iam_client, role_name, flow_id, flow_version, flow_alias): """ Deletes the flow, flow alias, flow version, and IAM roles. Args: bedrock_agent_client: Amazon Bedrock Agent boto3 client. iam_client: Amazon IAM boto3 client. role_name (str): The name of the IAM role. flow_id (str): The id of the flow. flow_version (str): The version of the flow. flow_alias (str): The alias of the flow. """ if flow_id is not None: if flow_alias is not None: delete_flow_alias(bedrock_agent_client, flow_id, flow_alias) if flow_version is not None: delete_flow_version(bedrock_agent_client, flow_id, flow_version) delete_flow(bedrock_agent_client, flow_id) if role_name is not None: delete_flow_role(iam_client, role_name) def main(): """ Creates, runs, and optionally deletes a Bedrock flow for generating music playlists. Note: Requires valid AWS credentials in the default profile """ delete_choice = "y" try: # Get various boto3 clients. session = boto3.Session(profile_name='default') bedrock_agent_runtime_client = session.client('bedrock-agent-runtime') bedrock_agent_client = session.client('bedrock-agent') bedrock_client = session.client('bedrock') iam_client = session.client('iam') role_name = None flow_id = None flow_version = None flow_alias = None #Change the model as needed. prompt_model_id = "amazon.nova-pro-v1:0" # Base the flow name on the current date and time current_time = datetime.now() timestamp = current_time.strftime("%Y-%m-%d-%H-%M-%S") flow_name = f"FlowPlayList_{timestamp}" flow_description = "A flow to generate a music playlist." # Create a role for the flow. role_name = f"BedrockFlowRole-{flow_name}" role = create_flow_role(iam_client, role_name) role_arn = role['Arn'] # Create the flow. response = create_playlist_flow( bedrock_agent_client, flow_name, flow_description, role_arn, prompt_model_id) flow_id = response.get('id') if flow_id: # Update accessible resources in the role. model_arn = get_model_arn(bedrock_client, prompt_model_id) update_role_policy(iam_client, role_name, [ response.get('arn'), model_arn]) # Prepare the flow and flow version. flow_version, flow_alias = prepare_flow_version_and_alias( bedrock_agent_client, flow_id) # Run the flow. if flow_version and flow_alias: run_playlist_flow(bedrock_agent_runtime_client, flow_id, flow_alias) delete_choice = input("Delete flow? y or n : ").lower() else: print("Couldn't run. Deleting flow and role.") delete_flow(bedrock_agent_client, flow_id) delete_flow_role(iam_client, role_name) else: print("Couldn't create flow.") except Exception as e: print(f"Fatal error: {str(e)}") finally: if delete_choice == 'y': delete_role_resources(bedrock_agent_client, iam_client, role_name, flow_id, flow_version, flow_alias) else: print("Flow not deleted. ") print(f"\tFlow ID: {flow_id}") print(f"\tFlow version: {flow_version}") print(f"\tFlow alias: {flow_alias}") print(f"\tRole ARN: {role_arn}") print("Done!") if __name__ == "__main__": main() def invoke_flow(client, flow_id, flow_alias_id, input_data): """ Invoke an Amazon Bedrock flow and handle the response stream. Args: client: Boto3 client for Amazon Bedrock agent runtime. flow_id: The ID of the flow to invoke. flow_alias_id: The alias ID of the flow. input_data: Input data for the flow. Returns: Dict containing flow status and flow output. """ response = None request_params = None request_params = { "flowIdentifier": flow_id, "flowAliasIdentifier": flow_alias_id, "inputs": [input_data], "enableTrace": True } response = client.invoke_flow(**request_params) flow_status = "" output= "" # Process the streaming response for event in response['responseStream']: # Check if flow is complete. if 'flowCompletionEvent' in event: flow_status = event['flowCompletionEvent']['completionReason'] # Save the model output. elif 'flowOutputEvent' in event: output = event['flowOutputEvent']['content']['document'] logger.info("Output : %s", output) # Log trace events. elif 'flowTraceEvent' in event: logger.info("Flow trace: %s", event['flowTraceEvent']) return { "flow_status": flow_status, "output": output } def run_playlist_flow(bedrock_agent_client, flow_id, flow_alias_id): """ Runs the playlist generator flow. Args: bedrock_agent_client: Boto3 client for Amazon Bedrock agent runtime. flow_id: The ID of the flow to run. flow_alias_id: The alias ID of the flow. """ print ("Welcome to the playlist generator flow.") # Get the initial prompt from the user. genre = input("Enter genre: ") number_of_songs = int(input("Enter number of songs: ")) # Use prompt to create input data for the input node. flow_input_data = { "content": { "document": { "genre" : genre, "number" : number_of_songs } }, "nodeName": "FlowInput", "nodeOutputName": "document" } try: result = invoke_flow( bedrock_agent_client, flow_id, flow_alias_id, flow_input_data) status = result['flow_status'] if status == "SUCCESS": # The flow completed successfully. logger.info("The flow %s successfully completed.", flow_id) print(result['output']) else: logger.warning("Flow status: %s",status) except ClientError as e: print(f"Client error: {str(e)}") logger.error("Client error: %s", {str(e)}) raise except Exception as e: logger.error("An error occurred: %s", {str(e)}) logger.error("Error type: %s", {type(e)}) raise def create_flow_role(client, role_name): """ Creates an IAM role for Amazon Bedrock with permissions to run a flow. Args: role_name (str): Name for the new IAM role. Returns: str: The role Amazon Resource Name. """ # Trust relationship policy - allows Amazon Bedrock service to assume this role. trust_policy = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "Service": "bedrock.amazonaws.com" }, "Action": "sts:AssumeRole" }] } # Basic inline policy for for running a flow. resources = "*" bedrock_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "bedrock:InvokeModel", "bedrock:Retrieve", "bedrock:RetrieveAndGenerate" ], # Using * as placeholder - Later you update with specific ARNs. "Resource": resources } ] } try: # Create the IAM role with trust policy logging.info("Creating role: %s",role_name) role = client.create_role( RoleName=role_name, AssumeRolePolicyDocument=json.dumps(trust_policy), Description="Role for Amazon Bedrock operations" ) # Attach inline policy to the role print("Attaching inline policy") client.put_role_policy( RoleName=role_name, PolicyName=f"{role_name}-policy", PolicyDocument=json.dumps(bedrock_policy) ) logging.info("Create Role ARN: %s", role['Role']['Arn']) return role['Role'] except ClientError as e: logging.warning("Error creating role: %s", str(e)) raise except Exception as e: logging.warning("Unexpected error: %s", str(e)) raise def update_role_policy(client, role_name, resource_arns): """ Updates an IAM role's inline policy with specific resource ARNs. Args: role_name (str): Name of the existing role. resource_arns (list): List of resource ARNs to allow access to. """ updated_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "bedrock:GetFlow", "bedrock:InvokeModel", "bedrock:Retrieve", "bedrock:RetrieveAndGenerate" ], "Resource": resource_arns } ] } try: client.put_role_policy( RoleName=role_name, PolicyName=f"{role_name}-policy", PolicyDocument=json.dumps(updated_policy) ) logging.info("Updated policy for role: %s",role_name) except ClientError as e: logging.warning("Error updating role policy: %s", str(e)) raise def delete_flow_role(client, role_name): """ Deletes an IAM role. Args: role_name (str): Name of the role to delete. """ try: # Detach and delete inline policies policies = client.list_role_policies(RoleName=role_name)['PolicyNames'] for policy_name in policies: client.delete_role_policy(RoleName=role_name, PolicyName=policy_name) # Delete the role client.delete_role(RoleName=role_name) logging.info("Deleted role: %s", role_name) except ClientError as e: logging.info("Error Deleting role: %s", str(e)) raise-
Weitere API-Informationen finden Sie in den folgenden Themen der API-Referenz zum AWS-SDK für Python (Boto3).
-
Wie das aussehen kann, sehen Sie am nachfolgenden Beispielcode:
Erstellen eines verwalteten Prompts
Erstellen einer Version des Prompts
Aufrufen des Prompts mithilfe der Version
Bereinigen der Ressourcen (optional).
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen und Aufrufen verwalteter Prompts
import argparse import boto3 import logging import time # Now import the modules from prompt import create_prompt, create_prompt_version, delete_prompt from run_prompt import invoke_prompt logging.basicConfig( level=logging.INFO, format='%(levelname)s: %(message)s' ) logger = logging.getLogger(__name__) def run_scenario(bedrock_client, bedrock_runtime_client, model_id, cleanup=True): """ Runs the Amazon Bedrock managed prompt scenario. Args: bedrock_client: The Amazon Bedrock Agent client. bedrock_runtime_client: The Amazon Bedrock Runtime client. model_id (str): The model ID to use for the prompt. cleanup (bool): Whether to clean up resources at the end of the scenario. Returns: dict: A dictionary containing the created resources. """ prompt_id = None try: # Step 1: Create a prompt print("\n=== Step 1: Creating a prompt ===") prompt_name = f"PlaylistGenerator-{int(time.time())}" prompt_description = "Playlist generator" prompt_template = """ Make me a {{genre}} playlist consisting of the following number of songs: {{number}}.""" create_response = create_prompt( bedrock_client, prompt_name, prompt_description, prompt_template, model_id ) prompt_id = create_response['id'] print(f"Created prompt: {prompt_name} with ID: {prompt_id}") # Create a version of the prompt print("\n=== Creating a version of the prompt ===") version_response = create_prompt_version( bedrock_client, prompt_id, description="Initial version of the product description generator" ) prompt_version_arn = version_response['arn'] prompt_version = version_response['version'] print(f"Created prompt version: {prompt_version}") print(f"Prompt version ARN: {prompt_version_arn}") # Step 2: Invoke the prompt directly print("\n=== Step 2: Invoking the prompt ===") input_variables = { "genre": "pop", "number": "2", } # Use the ARN from the create_prompt_version response result = invoke_prompt( bedrock_runtime_client, prompt_version_arn, input_variables ) # Display the playlist print(f"\n{result}") # Step 3: Clean up resources (optional) if cleanup: print("\n=== Step 3: Cleaning up resources ===") # Delete the prompt print(f"Deleting prompt {prompt_id}...") delete_prompt(bedrock_client, prompt_id) print("Cleanup complete") else: print("\n=== Resources were not cleaned up ===") print(f"Prompt ID: {prompt_id}") except Exception as e: logger.exception("Error in scenario: %s", str(e)) # Attempt to clean up if an error occurred and cleanup was requested if cleanup and prompt_id: try: print("\nCleaning up resources after error...") # Delete the prompt try: delete_prompt(bedrock_client, prompt_id) print("Cleanup after error complete") except Exception as cleanup_error: logger.error("Error during cleanup: %s", str(cleanup_error)) except Exception as final_error: logger.error("Final error during cleanup: %s", str(final_error)) # Re-raise the original exception raise def main(): """ Entry point for the Amazon Bedrock managed prompt scenario. """ parser = argparse.ArgumentParser( description="Run the Amazon Bedrock managed prompt scenario." ) parser.add_argument( '--region', default='us-east-1', help="The AWS Region to use." ) parser.add_argument( '--model-id', default='anthropic.claude-v2', help="The model ID to use for the prompt." ) parser.add_argument( '--cleanup', action='store_true', default=True, help="Clean up resources at the end of the scenario." ) parser.add_argument( '--no-cleanup', action='store_false', dest='cleanup', help="Don't clean up resources at the end of the scenario." ) args = parser.parse_args() bedrock_client = boto3.client('bedrock-agent', region_name=args.region) bedrock_runtime_client = boto3.client('bedrock-runtime', region_name=args.region) print("=== Amazon Bedrock Managed Prompt Scenario ===") print(f"Region: {args.region}") print(f"Model ID: {args.model_id}") print(f"Cleanup resources: {args.cleanup}") try: run_scenario( bedrock_client, bedrock_runtime_client, args.model_id, args.cleanup ) except Exception as e: logger.exception("Error running scenario: %s", str(e)) if __name__ == "__main__": main()-
Weitere API-Informationen finden Sie in den folgenden Themen der API-Referenz zum AWS-SDK für Python (Boto3).
-
Wie das aussehen kann, sehen Sie am nachfolgenden Beispielcode:
Erstellen einer Ausführungsrolle für den Agenten.
Erstellen einer Lambda-Funktion, die die Funktionen des Agenten implementiert.
Erstellen einer Lambda-Funktion, die die Funktionen des Agenten implementiert.
Erstellen einer Aktionsgruppe, die den Agenten mit der Lambda-Funktion verbindet.
Bereitstellen des vollständig konfigurierten Agenten.
Aufrufen des Agenten mit vom Benutzer bereitgestellten Prompts.
Löschen aller erstellten Ressourcen.
- SDK für Python (Boto3)
-
Anmerkung
Auf GitHub finden Sie noch mehr. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS-Codebeispiel-Repository
einrichten und ausführen. Erstellen Sie einen Agenten und rufen Sie ihn auf.
REGION = "us-east-1" ROLE_POLICY_NAME = "agent_permissions" class BedrockAgentScenarioWrapper: """Runs a scenario that shows how to get started using Amazon Bedrock Agents.""" def __init__( self, bedrock_agent_client, runtime_client, lambda_client, iam_resource, postfix ): self.iam_resource = iam_resource self.lambda_client = lambda_client self.bedrock_agent_runtime_client = runtime_client self.postfix = postfix self.bedrock_wrapper = BedrockAgentWrapper(bedrock_agent_client) self.agent = None self.agent_alias = None self.agent_role = None self.prepared_agent_details = None self.lambda_role = None self.lambda_function = None def run_scenario(self): print("=" * 88) print("Welcome to the Amazon Bedrock Agents demo.") print("=" * 88) # Query input from user print("Let's start with creating an agent:") print("-" * 40) name, foundation_model = self._request_name_and_model_from_user() print("-" * 40) # Create an execution role for the agent self.agent_role = self._create_agent_role(foundation_model) # Create the agent self.agent = self._create_agent(name, foundation_model) # Prepare a DRAFT version of the agent self.prepared_agent_details = self._prepare_agent() # Create the agent's Lambda function self.lambda_function = self._create_lambda_function() # Configure permissions for the agent to invoke the Lambda function self._allow_agent_to_invoke_function() self._let_function_accept_invocations_from_agent() # Create an action group to connect the agent with the Lambda function self._create_agent_action_group() # If the agent has been modified or any components have been added, prepare the agent again components = [self._get_agent()] components += self._get_agent_action_groups() components += self._get_agent_knowledge_bases() latest_update = max(component["updatedAt"] for component in components) if latest_update > self.prepared_agent_details["preparedAt"]: self.prepared_agent_details = self._prepare_agent() # Create an agent alias self.agent_alias = self._create_agent_alias() # Test the agent self._chat_with_agent(self.agent_alias) print("=" * 88) print("Thanks for running the demo!\n") if q.ask("Do you want to delete the created resources? [y/N] ", q.is_yesno): self._delete_resources() print("=" * 88) print( "All demo resources have been deleted. Thanks again for running the demo!" ) else: self._list_resources() print("=" * 88) print("Thanks again for running the demo!") def _request_name_and_model_from_user(self): existing_agent_names = [ agent["agentName"] for agent in self.bedrock_wrapper.list_agents() ] while True: name = q.ask("Enter an agent name: ", self.is_valid_agent_name) if name.lower() not in [n.lower() for n in existing_agent_names]: break print( f"Agent {name} conflicts with an existing agent. Please use a different name." ) models = ["anthropic.claude-instant-v1", "anthropic.claude-v2"] model_id = models[ q.choose("Which foundation model would you like to use? ", models) ] return name, model_id def _create_agent_role(self, model_id): role_name = f"AmazonBedrockExecutionRoleForAgents_{self.postfix}" model_arn = f"arn:aws:bedrock:{REGION}::foundation-model/{model_id}*" print("Creating an an execution role for the agent...") try: role = self.iam_resource.create_role( RoleName=role_name, AssumeRolePolicyDocument=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": {"Service": "bedrock.amazonaws.com"}, "Action": "sts:AssumeRole", } ], } ), ) role.Policy(ROLE_POLICY_NAME).put( PolicyDocument=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "bedrock:InvokeModel", "Resource": model_arn, } ], } ) ) except ClientError as e: logger.error(f"Couldn't create role {role_name}. Here's why: {e}") raise return role def _create_agent(self, name, model_id): print("Creating the agent...") instruction = """ You are a friendly chat bot. You have access to a function called that returns information about the current date and time. When responding with date or time, please make sure to add the timezone UTC. """ agent = self.bedrock_wrapper.create_agent( agent_name=name, foundation_model=model_id, instruction=instruction, role_arn=self.agent_role.arn, ) self._wait_for_agent_status(agent["agentId"], "NOT_PREPARED") return agent def _prepare_agent(self): print("Preparing the agent...") agent_id = self.agent["agentId"] prepared_agent_details = self.bedrock_wrapper.prepare_agent(agent_id) self._wait_for_agent_status(agent_id, "PREPARED") return prepared_agent_details def _create_lambda_function(self): print("Creating the Lambda function...") function_name = f"AmazonBedrockExampleFunction_{self.postfix}" self.lambda_role = self._create_lambda_role() try: deployment_package = self._create_deployment_package(function_name) lambda_function = self.lambda_client.create_function( FunctionName=function_name, Description="Lambda function for Amazon Bedrock example", Runtime="python3.11", Role=self.lambda_role.arn, Handler=f"{function_name}.lambda_handler", Code={"ZipFile": deployment_package}, Publish=True, ) waiter = self.lambda_client.get_waiter("function_active_v2") waiter.wait(FunctionName=function_name) except ClientError as e: logger.error( f"Couldn't create Lambda function {function_name}. Here's why: {e}" ) raise return lambda_function def _create_lambda_role(self): print("Creating an execution role for the Lambda function...") role_name = f"AmazonBedrockExecutionRoleForLambda_{self.postfix}" try: role = self.iam_resource.create_role( RoleName=role_name, AssumeRolePolicyDocument=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action": "sts:AssumeRole", } ], } ), ) role.attach_policy( PolicyArn="arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole" ) print(f"Created role {role_name}") except ClientError as e: logger.error(f"Couldn't create role {role_name}. Here's why: {e}") raise print("Waiting for the execution role to be fully propagated...") wait(10) return role def _allow_agent_to_invoke_function(self): policy = self.iam_resource.RolePolicy( self.agent_role.role_name, ROLE_POLICY_NAME ) doc = policy.policy_document doc["Statement"].append( { "Effect": "Allow", "Action": "lambda:InvokeFunction", "Resource": self.lambda_function["FunctionArn"], } ) self.agent_role.Policy(ROLE_POLICY_NAME).put(PolicyDocument=json.dumps(doc)) def _let_function_accept_invocations_from_agent(self): try: self.lambda_client.add_permission( FunctionName=self.lambda_function["FunctionName"], SourceArn=self.agent["agentArn"], StatementId="BedrockAccess", Action="lambda:InvokeFunction", Principal="bedrock.amazonaws.com", ) except ClientError as e: logger.error( f"Couldn't grant Bedrock permission to invoke the Lambda function. Here's why: {e}" ) raise def _create_agent_action_group(self): print("Creating an action group for the agent...") try: with open("./scenario_resources/api_schema.yaml") as file: self.bedrock_wrapper.create_agent_action_group( name="current_date_and_time", description="Gets the current date and time.", agent_id=self.agent["agentId"], agent_version=self.prepared_agent_details["agentVersion"], function_arn=self.lambda_function["FunctionArn"], api_schema=json.dumps(yaml.safe_load(file)), ) except ClientError as e: logger.error(f"Couldn't create agent action group. Here's why: {e}") raise def _get_agent(self): return self.bedrock_wrapper.get_agent(self.agent["agentId"]) def _get_agent_action_groups(self): return self.bedrock_wrapper.list_agent_action_groups( self.agent["agentId"], self.prepared_agent_details["agentVersion"] ) def _get_agent_knowledge_bases(self): return self.bedrock_wrapper.list_agent_knowledge_bases( self.agent["agentId"], self.prepared_agent_details["agentVersion"] ) def _create_agent_alias(self): print("Creating an agent alias...") agent_alias_name = "test_agent_alias" agent_alias = self.bedrock_wrapper.create_agent_alias( agent_alias_name, self.agent["agentId"] ) self._wait_for_agent_status(self.agent["agentId"], "PREPARED") return agent_alias def _wait_for_agent_status(self, agent_id, status): while self.bedrock_wrapper.get_agent(agent_id)["agentStatus"] != status: wait(2) def _chat_with_agent(self, agent_alias): print("-" * 88) print("The agent is ready to chat.") print("Try asking for the date or time. Type 'exit' to quit.") # Create a unique session ID for the conversation session_id = uuid.uuid4().hex while True: prompt = q.ask("Prompt: ", q.non_empty) if prompt == "exit": break response = asyncio.run(self._invoke_agent(agent_alias, prompt, session_id)) print(f"Agent: {response}") async def _invoke_agent(self, agent_alias, prompt, session_id): response = self.bedrock_agent_runtime_client.invoke_agent( agentId=self.agent["agentId"], agentAliasId=agent_alias["agentAliasId"], sessionId=session_id, inputText=prompt, ) completion = "" for event in response.get("completion"): chunk = event["chunk"] completion += chunk["bytes"].decode() return completion def _delete_resources(self): if self.agent: agent_id = self.agent["agentId"] if self.agent_alias: agent_alias_id = self.agent_alias["agentAliasId"] print("Deleting agent alias...") self.bedrock_wrapper.delete_agent_alias(agent_id, agent_alias_id) print("Deleting agent...") agent_status = self.bedrock_wrapper.delete_agent(agent_id)["agentStatus"] while agent_status == "DELETING": wait(5) try: agent_status = self.bedrock_wrapper.get_agent( agent_id, log_error=False )["agentStatus"] except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": agent_status = "DELETED" if self.lambda_function: name = self.lambda_function["FunctionName"] print(f"Deleting function '{name}'...") self.lambda_client.delete_function(FunctionName=name) if self.agent_role: print(f"Deleting role '{self.agent_role.role_name}'...") self.agent_role.Policy(ROLE_POLICY_NAME).delete() self.agent_role.delete() if self.lambda_role: print(f"Deleting role '{self.lambda_role.role_name}'...") for policy in self.lambda_role.attached_policies.all(): policy.detach_role(RoleName=self.lambda_role.role_name) self.lambda_role.delete() def _list_resources(self): print("-" * 40) print(f"Here is the list of created resources in '{REGION}'.") print("Make sure you delete them once you're done to avoid unnecessary costs.") if self.agent: print(f"Bedrock Agent: {self.agent['agentName']}") if self.lambda_function: print(f"Lambda function: {self.lambda_function['FunctionName']}") if self.agent_role: print(f"IAM role: {self.agent_role.role_name}") if self.lambda_role: print(f"IAM role: {self.lambda_role.role_name}") @staticmethod def is_valid_agent_name(answer): valid_regex = r"^[a-zA-Z0-9_-]{1,100}$" return ( answer if answer and len(answer) <= 100 and re.match(valid_regex, answer) else None, "I need a name for the agent, please. Valid characters are a-z, A-Z, 0-9, _ (underscore) and - (hyphen).", ) @staticmethod def _create_deployment_package(function_name): buffer = io.BytesIO() with zipfile.ZipFile(buffer, "w") as zipped: zipped.write( "./scenario_resources/lambda_function.py", f"{function_name}.py" ) buffer.seek(0) return buffer.read() if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") postfix = "".join( random.choice(string.ascii_lowercase + "0123456789") for _ in range(8) ) scenario = BedrockAgentScenarioWrapper( bedrock_agent_client=boto3.client( service_name="bedrock-agent", region_name=REGION ), runtime_client=boto3.client( service_name="bedrock-agent-runtime", region_name=REGION ), lambda_client=boto3.client(service_name="lambda", region_name=REGION), iam_resource=boto3.resource("iam"), postfix=postfix, ) try: scenario.run_scenario() except Exception as e: logging.exception(f"Something went wrong with the demo. Here's what: {e}")-
Weitere API-Informationen finden Sie in den folgenden Themen der API-Referenz zum AWS-SDK für Python (Boto3).
-
Im folgenden Codebeispiel wird gezeigt, wie Anwendungen mit generativer KI mit Amazon Bedrock und Step Functions erstellt und orchestriert werden.
- SDK für Python (Boto3)
-
Das Szenario „Amazon Bedrock Serverless Prompt Chaining” zeigt, wie AWS Step Functions, Amazon Bedrock und https://docs.aws.amazon.com/bedrock/latest/userguide/agents.html zum Erstellen und Orchestrieren komplexer und hoch skalierbarer Serverless-Anwendungen mit generativer KI verwendet werden können. Es enthält die folgenden praktischen Beispiele:
-
Verfassen einer Analyse eines bestimmten Romans für einen Literaturblog. Dieses Beispiel veranschaulicht eine einfache, sequentielle Kette von Prompts.
-
Generieren einer Kurzgeschichte zu einem bestimmten Thema. Dieses Beispiel veranschaulicht, wie die KI eine Liste von zuvor generierten Elementen iterativ verarbeiten kann.
-
Erstellen eines Reiseplans für einen Wochenendurlaub an einem bestimmten Zielort. Dieses Beispiel veranschaulicht, wie mehrere unterschiedliche Prompts parallelisiert werden können.
-
Präsentieren von Filmideen einem menschlichen Benutzer, der als Filmproduzent fungiert. Dieses Beispiel zeigt, wie derselbe Prompt mit unterschiedlichen Inferenzparametern parallelisiert wird, wie man zu einem vorherigen Schritt in der Kette zurückkehrt und wie menschliche Eingaben in den Workflow einbezogen werden können.
-
Planen einer Mahlzeit auf Grundlage der Zutaten, die der Benutzer zur Hand hat. Dieses Beispiel zeigt, wie Prompt-Chains zwei unterschiedliche KI-Konversationen beinhalten können, bei denen zwei KI-Personas miteinander debattieren, um das Endergebnis zu verbessern.
-
Finden und Zusammenfassen des derzeit beliebtesten GitHub-Repositorys. Dieses Beispiel zeigt die Verkettung mehrerer KI-Agenten, die mit externen APIs interagieren.
Den vollständigen Quellcode sowie Anleitungen zur Einrichtung und Ausführung finden Sie im kompletten Projekt auf GitHub
. In diesem Beispiel verwendete Services
Amazon Bedrock
Amazon Bedrock Runtime
Amazon Bedrock Agents
Amazon Bedrock Agents Runtime
Step Functions
-