Weitere AWS SDK-Beispiele sind im GitHub Repo AWS Doc SDK Examples
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Beispiele für Amazon Bedrock unter Verwendung von SDK für Python (Boto3)
Die folgenden Codebeispiele zeigen Ihnen, wie Sie mithilfe von Amazon Bedrock Aktionen ausführen und allgemeine Szenarien implementieren. AWS SDK für Python (Boto3)
Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Während Aktionen Ihnen zeigen, wie Sie einzelne Service-Funktionen aufrufen, können Sie Aktionen im Kontext der zugehörigen Szenarien anzeigen.
Szenarien sind Codebeispiele, die Ihnen zeigen, wie Sie bestimmte Aufgaben ausführen, indem Sie mehrere Funktionen innerhalb eines Service aufrufen oder mit anderen AWS-Services kombinieren.
Jedes Beispiel enthält einen Link zum vollständigen Quellcode, wo Sie Anweisungen zum Einrichten und Ausführen des Codes im Kodex finden.
Erste Schritte
Das folgende Codebeispiel zeigt, wie Sie mit Amazon Bedrock beginnen können.
- SDK für Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-
einrichten und ausführen. """ Lists the available Amazon Bedrock models. """ import logging import json import boto3 from botocore.exceptions import ClientError logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def list_foundation_models(bedrock_client): """ Gets a list of available Amazon Bedrock foundation models. :return: The list of available bedrock foundation models. """ try: response = bedrock_client.list_foundation_models() models = response["modelSummaries"] logger.info("Got %s foundation models.", len(models)) return models except ClientError: logger.error("Couldn't list foundation models.") raise def main(): """Entry point for the example. Uses the AWS SDK for Python (Boto3) to create an Amazon Bedrock client. Then lists the available Bedrock models in the region set in the callers profile and credentials. """ bedrock_client = boto3.client(service_name="bedrock") fm_models = list_foundation_models(bedrock_client) for model in fm_models: print(f"Model: {model['modelName']}") print(json.dumps(model, indent=2)) print("---------------------------\n") logger.info("Done.") if __name__ == "__main__": main()-
Einzelheiten zur API finden Sie ListFoundationModelsin AWS SDK for Python (Boto3) API Reference.
-
Aktionen
Das folgende Codebeispiel zeigt die Verwendung. GetFoundationModel
- SDK für Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu GitHub. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-
einrichten und ausführen. Rufen Sie Details über ein Basismodell ab.
def get_foundation_model(self, model_identifier): """ Get details about an Amazon Bedrock foundation model. :return: The foundation model's details. """ try: return self.bedrock_client.get_foundation_model( modelIdentifier=model_identifier )["modelDetails"] except ClientError: logger.error( f"Couldn't get foundation models details for {model_identifier}" ) raise-
Einzelheiten zur API finden Sie GetFoundationModelin AWS SDK for Python (Boto3) API Reference.
-
Das folgende Codebeispiel zeigt die Verwendung. ListFoundationModels
- SDK für Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu GitHub. Hier finden Sie das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-
einrichten und ausführen. Auflisten der verfügbaren Amazon-Bedrock-Basismodelle.
def list_foundation_models(self): """ List the available Amazon Bedrock foundation models. :return: The list of available bedrock foundation models. """ try: response = self.bedrock_client.list_foundation_models() models = response["modelSummaries"] logger.info("Got %s foundation models.", len(models)) return models except ClientError: logger.error("Couldn't list foundation models.") raise-
Einzelheiten zur API finden Sie ListFoundationModelsin AWS SDK for Python (Boto3) API Reference.
-
Szenarien
Im folgenden Codebeispiel wird gezeigt, wie Anwendungen mit generativer KI mit Amazon Bedrock und Step Functions erstellt und orchestriert werden.
- SDK für Python (Boto3)
-
Das Szenario „Amazon Bedrock Serverless Prompt Chaining” zeigt, wie AWS Step Functions, Amazon Bedrock und https://docs.aws.amazon.com/bedrock/latest/userguide/agents.html zum Erstellen und Orchestrieren komplexer und hoch skalierbarer Serverless-Anwendungen mit generativer KI verwendet werden können. Es enthält die folgenden praktischen Beispiele:
-
Verfassen einer Analyse eines bestimmten Romans für einen Literaturblog. Dieses Beispiel veranschaulicht eine einfache, sequentielle Kette von Prompts.
-
Generieren einer Kurzgeschichte zu einem bestimmten Thema. Dieses Beispiel veranschaulicht, wie die KI eine Liste von zuvor generierten Elementen iterativ verarbeiten kann.
-
Erstellen eines Reiseplans für einen Wochenendurlaub an einem bestimmten Zielort. Dieses Beispiel veranschaulicht, wie mehrere unterschiedliche Prompts parallelisiert werden können.
-
Präsentieren von Filmideen für einen menschlichen Benutzer, der als Filmproduzent fungiert. Dieses Beispiel zeigt, wie derselbe Prompt mit unterschiedlichen Inferenzparametern parallelisiert wird, wie man zu einem vorherigen Schritt in der Kette zurückkehrt und wie menschliche Eingaben in den Workflow einbezogen werden können.
-
Planen einer Mahlzeit auf Grundlage der Zutaten, die der Benutzer zur Hand hat. Dieses Beispiel zeigt, wie Prompt-Chains zwei unterschiedliche KI-Konversationen beinhalten können, bei denen zwei KI-Personas miteinander debattieren, um das Endergebnis zu verbessern.
-
Finden Sie das Repository mit den meisten Trends von heute und fassen Sie es zusammen. GitHub Dieses Beispiel veranschaulicht die Verkettung mehrerer KI-Agenten, die mit externen Agenten interagieren. APIs
Den vollständigen Quellcode und Anweisungen zur Einrichtung und Ausführung finden Sie im vollständigen Projekt unter GitHub
. In diesem Beispiel verwendete Dienste
Amazon Bedrock
Amazon Bedrock Runtime
Agenten für Amazon Bedrock
Runtime der Agenten für Amazon Bedrock
Step Functions
-