Create and configure a HyperPod cluster with Karpenter autoscaling - Amazon SageMaker AI

Create and configure a HyperPod cluster with Karpenter autoscaling

In the following steps, you'll create a SageMaker HyperPod cluster with continuous provisioning enabled and configure it to use Karpenter-based autoscaling.

Create a HyperPod cluster
  1. Load your environment configuration and extract values from CloudFormation stacks.

    source .env SUBNET1=$(cfn-output $VPC_STACK_NAME PrivateSubnet1) SUBNET2=$(cfn-output $VPC_STACK_NAME PrivateSubnet2) SUBNET3=$(cfn-output $VPC_STACK_NAME PrivateSubnet3) SECURITY_GROUP=$(cfn-output $VPC_STACK_NAME NoIngressSecurityGroup) EKS_CLUSTER_ARN=$(cfn-output $EKS_STACK_NAME ClusterArn) EXECUTION_ROLE=$(cfn-output $SAGEMAKER_STACK_NAME ExecutionRole) SERVICE_ROLE=$(cfn-output $SAGEMAKER_STACK_NAME ServiceRole) BUCKET_NAME=$(cfn-output $SAGEMAKER_STACK_NAME Bucket) HP_CLUSTER_NAME="hyperpod-eks-test-$(date +%s)" EKS_CLUSTER_NAME=$(cfn-output $EKS_STACK_NAME ClusterName) HP_CLUSTER_ROLE=$(cfn-output $SAGEMAKER_STACK_NAME ClusterRole)
  2. Upload the node initialization script to your Amazon S3 bucket.

    aws s3 cp lifecyclescripts/on_create_noop.sh s3://$BUCKET_NAME
  3. Create a cluster configuration file with your environment variables.

    cat > cluster_config.json << EOF { "ClusterName": "$HP_CLUSTER_NAME", "InstanceGroups": [ { "InstanceCount": 1, "InstanceGroupName": "system", "InstanceType": "ml.c5.xlarge", "LifeCycleConfig": { "SourceS3Uri": "s3://$BUCKET_NAME", "OnCreate": "on_create_noop.sh" }, "ExecutionRole": "$EXECUTION_ROLE" }, { "InstanceCount": 0, "InstanceGroupName": "auto-c5-az1", "InstanceType": "ml.c5.xlarge", "LifeCycleConfig": { "SourceS3Uri": "s3://$BUCKET_NAME", "OnCreate": "on_create_noop.sh" }, "ExecutionRole": "$EXECUTION_ROLE" }, { "InstanceCount": 0, "InstanceGroupName": "auto-c5-4xaz2", "InstanceType": "ml.c5.4xlarge", "LifeCycleConfig": { "SourceS3Uri": "s3://$BUCKET_NAME", "OnCreate": "on_create_noop.sh" }, "ExecutionRole": "$EXECUTION_ROLE", "OverrideVpcConfig": { "SecurityGroupIds": [ "$SECURITY_GROUP" ], "Subnets": [ "$SUBNET2" ] } }, { "InstanceCount": 0, "InstanceGroupName": "auto-g5-az3", "InstanceType": "ml.g5.xlarge", "LifeCycleConfig": { "SourceS3Uri": "s3://$BUCKET_NAME", "OnCreate": "on_create_noop.sh" }, "ExecutionRole": "$EXECUTION_ROLE", "OverrideVpcConfig": { "SecurityGroupIds": [ "$SECURITY_GROUP" ], "Subnets": [ "$SUBNET3" ] } } ], "VpcConfig": { "SecurityGroupIds": [ "$SECURITY_GROUP" ], "Subnets": [ "$SUBNET1" ] }, "Orchestrator": { "Eks": { "ClusterArn": "$EKS_CLUSTER_ARN" } }, "ClusterRole": "$HP_CLUSTER_ROLE", "AutoScaling": { "Mode": "Enable", "AutoScalerType": "Karpenter" }, "NodeProvisioningMode": "Continuous" } EOF
  4. Run the following command to create your HyperPod cluster.

    aws sagemaker create-cluster --cli-input-json file://./cluster_config.json
  5. The cluster creation process takes approximately 20 minutes. Monitor the cluster status until both ClusterStatus and AutoScaling.Status show InService.

  6. Save the cluster ARN for subsequent operations.

    HP_CLUSTER_ARN=$(aws sagemaker describe-cluster --cluster-name $HP_CLUSTER_NAME \ --output text --query ClusterArn)
Enable Karpenter autoscaling
  1. Run the following command to enable Karpenter-based autoscaling on any pre-existing cluster that has continuous node provisioning mode.

    aws sagemaker update-cluster \ --cluster-name $HP_CLUSTER_NAME \ --auto-scaling Mode=Enable,AutoScalerType=Karpenter \ --cluster-role $HP_CLUSTER_ROLE
  2. Verify that Karpenter has been successfully enabled:

    aws sagemaker describe-cluster --cluster-name $HP_CLUSTER_NAME --query 'AutoScaling'
  3. Expected output:

    { "Mode": "Enable", "AutoScalerType": "Karpenter", "Status": "InService" }

Wait for the Status to show InService before proceeding to configure NodeClass and NodePool.