Seleccione sus preferencias de cookies

Usamos cookies esenciales y herramientas similares que son necesarias para proporcionar nuestro sitio y nuestros servicios. Usamos cookies de rendimiento para recopilar estadísticas anónimas para que podamos entender cómo los clientes usan nuestro sitio y hacer mejoras. Las cookies esenciales no se pueden desactivar, pero puede hacer clic en “Personalizar” o “Rechazar” para rechazar las cookies de rendimiento.

Si está de acuerdo, AWS y los terceros aprobados también utilizarán cookies para proporcionar características útiles del sitio, recordar sus preferencias y mostrar contenido relevante, incluida publicidad relevante. Para aceptar o rechazar todas las cookies no esenciales, haga clic en “Aceptar” o “Rechazar”. Para elegir opciones más detalladas, haga clic en “Personalizar”.

Introduction - Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL
Esta página no se ha traducido a su idioma. Solicitar traducción

Introduction

The AWS Cloud accelerates big data analytics. With access to instant scalability and elasticity on AWS, you can focus on analytics instead of infrastructure. Whether you are indexing large data sets, analyzing massive amounts of scientific data, or processing clickstream logs, AWS provides a range of big data products and services that you can leverage for virtually any data-intensive project.

There is a wide adoption of NoSQL databases in the growing industry of big data and real-time web applications. Amazon DynamoDB and Apache HBase are examples of NoSQL databases, which are highly optimized to yield significant performance benefits over a traditional relational database management system (RDBMS). Both Amazon DynamoDB and Apache HBase can process large volumes of data with high performance and throughput.

Amazon DynamoDB provides a fast, fully managed NoSQL database service. It lets you offload operating and scaling a highly available, distributed database cluster. Apache HBase is an open-source, column-oriented, distributed big data store that runs on the Apache Hadoop framework and is typically deployed on top of the Hadoop Distributed File System (HDFS), which provides a scalable, persistent, storage layer.

In the AWS Cloud, you can choose to deploy Apache HBase on Amazon Elastic Compute Cloud (Amazon EC2) and manage it yourself. Alternatively, you can leverage Apache HBase as a managed service on Amazon EMR, a fully managed, hosted Hadoop framework on top of Amazon EC2.

With Apache HBase on Amazon EMR, you can use Amazon Simple Storage Service (Amazon S3) as a data store using the EMR File System (EMRFS), an implementation of HDFS that all Amazon EMR clusters use for reading and writing regular files from Amazon EMR directly to Amazon S3.

The following figure shows the relationship between Amazon DynamoDB, Amazon EC2, Amazon EMR, Amazon S3, and Apache HBase in the AWS Cloud. Both Amazon DynamoDB and Apache HBase have tight integration with popular open source processing frameworks like Apache Hive and Apache Spark to enhance querying capabilities as illustrated in the diagram.

Relation between Amazon DynamoDB, Amazon EC2, Amazon EMR, and Apache HBase in the AWS Cloud

Figure 1: Relation between Amazon DynamoDB, Amazon EC2, Amazon EMR, and Apache HBase in the AWS Cloud

PrivacidadTérminos del sitioPreferencias de cookies
© 2025, Amazon Web Services, Inc o sus afiliados. Todos los derechos reservados.