Métriques de qualité du modèle - Amazon SageMaker

Métriques de qualité du modèle

Les tâches de surveillance de la qualité du modèle calculent différentes métriques en fonction du type de problème ML. Les sections suivantes répertorient les métriques analysées pour chaque type de problème ML.

Note

L'écart-type pour les métriques n'est fourni que si au moins 200 échantillons sont disponibles. Model Monitor calcule l'écart-type en échantillonnant au hasard 80 % des données à 5 reprises, en calculant la métrique et en prenant l'écart-type pour ces résultats.

Métriques de régression

L'exemple suivant illustre les métriques calculées par Model Monitor pour un problème de régression.

"regression_metrics" : { "mae" : { "value" : 0.3711832061068702, "standard_deviation" : 0.0037566388129940394 }, "mse" : { "value" : 0.3711832061068702, "standard_deviation" : 0.0037566388129940524 }, "rmse" : { "value" : 0.609248066149471, "standard_deviation" : 0.003079253267651125 }, "r2" : { "value" : -1.3766111872212665, "standard_deviation" : 0.022653980022771227 } }

Métriques de classification binaire

L'exemple suivant illustre les métriques calculées par Model Monitor pour un problème de classification binaire.

"binary_classification_metrics" : { "confusion_matrix" : { "0" : { "0" : 1, "1" : 2 }, "1" : { "0" : 0, "1" : 1 } }, "recall" : { "value" : 1.0, "standard_deviation" : "NaN" }, "precision" : { "value" : 0.3333333333333333, "standard_deviation" : "NaN" }, "accuracy" : { "value" : 0.5, "standard_deviation" : "NaN" }, "recall_best_constant_classifier" : { "value" : 1.0, "standard_deviation" : "NaN" }, "precision_best_constant_classifier" : { "value" : 0.25, "standard_deviation" : "NaN" }, "accuracy_best_constant_classifier" : { "value" : 0.25, "standard_deviation" : "NaN" }, "true_positive_rate" : { "value" : 1.0, "standard_deviation" : "NaN" }, "true_negative_rate" : { "value" : 0.33333333333333337, "standard_deviation" : "NaN" }, "false_positive_rate" : { "value" : 0.6666666666666666, "standard_deviation" : "NaN" }, "false_negative_rate" : { "value" : 0.0, "standard_deviation" : "NaN" }, "receiver_operating_characteristic_curve" : { "false_positive_rates" : [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 ], "true_positive_rates" : [ 0.0, 0.25, 0.5, 0.75, 1.0, 1.0 ] }, "precision_recall_curve" : { "precisions" : [ 1.0, 1.0, 1.0, 1.0, 1.0 ], "recalls" : [ 0.0, 0.25, 0.5, 0.75, 1.0 ] }, "auc" : { "value" : 1.0, "standard_deviation" : "NaN" }, "f0_5" : { "value" : 0.3846153846153846, "standard_deviation" : "NaN" }, "f1" : { "value" : 0.5, "standard_deviation" : "NaN" }, "f2" : { "value" : 0.7142857142857143, "standard_deviation" : "NaN" }, "f0_5_best_constant_classifier" : { "value" : 0.29411764705882354, "standard_deviation" : "NaN" }, "f1_best_constant_classifier" : { "value" : 0.4, "standard_deviation" : "NaN" }, "f2_best_constant_classifier" : { "value" : 0.625, "standard_deviation" : "NaN" } }

Métriques multiclasse

L'exemple suivant illustre les métriques calculées par Model Monitor pour un problème de classification multiclasse.

"multiclass_classification_metrics" : { "confusion_matrix" : { "0" : { "0" : 1180, "1" : 510 }, "1" : { "0" : 268, "1" : 138 } }, "accuracy" : { "value" : 0.6288167938931297, "standard_deviation" : 0.00375663881299405 }, "weighted_recall" : { "value" : 0.6288167938931297, "standard_deviation" : 0.003756638812994008 }, "weighted_precision" : { "value" : 0.6983172269629505, "standard_deviation" : 0.006195912915307507 }, "weighted_f0_5" : { "value" : 0.6803947317178771, "standard_deviation" : 0.005328406973561699 }, "weighted_f1" : { "value" : 0.6571162346664904, "standard_deviation" : 0.004385008075019733 }, "weighted_f2" : { "value" : 0.6384024354394601, "standard_deviation" : 0.003867109755267757 }, "accuracy_best_constant_classifier" : { "value" : 0.19370229007633588, "standard_deviation" : 0.0032049848450732355 }, "weighted_recall_best_constant_classifier" : { "value" : 0.19370229007633588, "standard_deviation" : 0.0032049848450732355 }, "weighted_precision_best_constant_classifier" : { "value" : 0.03752057718081697, "standard_deviation" : 0.001241536088657851 }, "weighted_f0_5_best_constant_classifier" : { "value" : 0.04473443104152011, "standard_deviation" : 0.0014460485504284792 }, "weighted_f1_best_constant_classifier" : { "value" : 0.06286421244683643, "standard_deviation" : 0.0019113576884608862 }, "weighted_f2_best_constant_classifier" : { "value" : 0.10570313141262414, "standard_deviation" : 0.002734216826748117 } }