dataInputConfig
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.
TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
{"input":[1,1024,1024,3]}If using the CLI,
{\"input\":[1,1024,1024,3]}Examples for two inputs:
If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}If using the CLI,
{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format,DataInputConfigshould be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
{"input_1":[1,3,224,224]}If using the CLI,
{\"input_1\":[1,3,224,224]}Examples for two inputs:
If using the console,
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}If using the CLI,
{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
{"data":[1,3,1024,1024]}If using the CLI,
{\"data\":[1,3,1024,1024]}Examples for two inputs:
If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}If using the CLI,
{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.Examples for one input in dictionary format:
If using the console,
{"input0":[1,3,224,224]}If using the CLI,
{\"input0\":[1,3,224,224]}Example for one input in list format:
[[1,3,224,224]]Examples for two inputs in dictionary format:
If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}If using the CLI,
{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]XGBOOST: input data name and shape are not needed.
DataInputConfig supports the following parameters for CoreML``TargetDevice (ML Model format):
shape: Input shape, for example{"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}type: Input type. Allowed values:ImageandTensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such asbiasandscale.bias: If the input type is an Image, you need to provide the bias vector.scale: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig parameters can be specified using OutputConfigCompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig requires the following parameters for ml_eia2OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_keyand the input model shapes forDataInputConfig. Specify thesignature_def_keyinOutputConfig:CompilerOptionsif the model does not use TensorFlow's default signature def key. For example:"DataInputConfig": {"inputs": [1, 224, 224, 3]}"CompilerOptions": {"signature_def_key": "serving_custom"}For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfigand the output tensor names foroutput_namesinOutputConfig:CompilerOptions. For example:"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}"CompilerOptions": {"output_names": ["output_tensor:0"]}