Annexe B — Exemple de calcul du Khi deux - Modèles de résilience multi-AZ avancés

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Annexe B — Exemple de calcul du Khi deux

Voici un exemple de collecte de mesures d'erreur et d'exécution d'un test du Khi deux sur les données. Le code n'est pas prêt pour la production et n'effectue pas la gestion des erreurs nécessaire, mais fournit une preuve de concept sur le fonctionnement de la logique. Vous devez mettre à jour cet exemple en fonction de vos besoins.

Tout d'abord, une fonction Lambda est invoquée chaque minute par un AmazonEventBridgeévénement prévu. Le contenu de l'événement est configuré avec les données suivantes :

{ "timestamp": "2023-03-15T15:26:37.527Z", "namespace": "multi-az/frontend", "metricName": "5xx", "dimensions": [ { "Name": "Region", "Value": "us-east-1" }, { "Name": "Controller", "Value": "Home" }, { "Name": "Action", "Value": "Index" } ], "period": 60, "stat": "Sum", "unit": "Count", "chiSquareMetricName": "multi-az/chi-squared", "azs": [ "use1-az2", "use1-az4", "use1-az6" ] }

Les données sont utilisées pour spécifier les données communes nécessaires pour récupérer les informations appropriéesCloudWatchdes métriques (telles que l'espace de nommage, le nom de la métrique et les dimensions), puis publiez les résultats au Khi deux pour chaque zone de disponibilité. Le code de la fonction Lambda ressemble au suivant avec Python 3.9. À un niveau élevé, il collecte les informations spécifiéesCloudWatchmétriques de la minute précédente, exécute le test du Khi deux sur ces données, puis publieCloudWatchdes mesures concernant le résultat du test pour chaque zone de disponibilité spécifiée.

import os import boto3 import datetime import copy import json from datetime import timedelta from scipy.stats import chisquare from aws_embedded_metrics import metric_scope cw_client = boto3.client("cloudwatch", os.environ.get("AWS_REGION", "us-east-1")) @metric_scope def handler(event, context, metrics): metrics.set_property("Event", json.loads(json.dumps(event, default = str))) time = datetime.datetime.strptime(event["timestamp"], "%Y-%m-%dT%H:%M:%S.%fZ") # Round down to the previous minute end: datetime = roundTime(time) # Subtract a minute for the start start: datetime = end - timedelta(minutes = 1) # Get all the metrics that match the query results = get_all_metrics(event, start, end, metrics) metrics.set_property("MetricCounts", results) # Calculate the chi squared result chi_sq_result = chisquare(list(results.values())) expected = sum(list(results.values())) / len(results.values()) metrics.set_property("ChiSquaredResult", chi_sq_result) # Put the chi square metrics into CloudWatch put_all_metrics(event, results, chi_sq_result[1], expected, start, metrics) def get_all_metrics(detail: dict, start: datetime, end: datetime, metrics): """ Gets all of the error metrics for each AZ specified """ metric_query = { "MetricDataQueries": [ ], "StartTime": start, "EndTime": end } for az in detail["azs"]: dim = copy.deepcopy(detail["dimensions"]) dim.append({"Name": "AZ-ID", "Value": az}) query = { "Id": az.replace("-", "_"), "MetricStat": { "Metric": { "Namespace": detail["namespace"], "MetricName": detail["metricName"], "Dimensions": dim }, "Period": int(detail["period"]), "Stat": detail["stat"], "Unit": detail["unit"] }, "Label": az, "ReturnData": True } metric_query["MetricDataQueries"].append(query) metrics.set_property("GetMetricRequest", json.loads(json.dumps(metric_query, default=str))) next_token: str = None results = {} while True: if next_token is not None: metric_query["NextToken"] = next_token data = cw_client.get_metric_data(**metric_query) if next_token is not None: metrics.set_property("GetMetricResult::" + next_token, json.loads(json.dumps(data, default = str))) else: metrics.set_property("GetMetricResult", json.loads(json.dumps(data, default = str))) for item in data["MetricDataResults"]: key = item["Id"].replace("_", "-") if key not in results: results[key] = 0 results[key] += sum(item["Values"]) if "NextToken" in data: next_token = data["NextToken"] if next_token is None: break return results def put_all_metrics(detail: dict, results: dict, chi_sq_value: float, expected: float, timestamp: datetime, metrics): """ Adds the chi squared metric for all AZs to CloudWatch """ farthest_from_expected = None if len(results) > 0: keys = list(results.keys()) farthest_from_expected = keys[0] for key in keys: if abs(results[key] - expected) > abs(results[farthest_from_expected] - expected): farthest_from_expected = key metric_query = { "Namespace": detail["namespace"], "MetricData": [] } for az in detail["azs"]: dim = copy.deepcopy(detail["dimensions"]) dim.append({"Name": "AZ-ID", "Value": az}) query = { "MetricName": detail["chiSquareMetricName"], "Dimensions": dim, "Timestamp": timestamp, } if chi_sq_value <= 0.05 and az == farthest_from_expected: query["Value"] = 1 else: query["Value"] = 0 metric_query["MetricData"].append(query) metrics.set_property("PutMetricRequest", json.loads(json.dumps(metric_query, default = str))) cw_client.put_metric_data(**metric_query) def roundTime(dt=None, roundTo=60): """Round a datetime object to any time lapse in seconds dt : datetime.datetime object, default now. roundTo : Closest number of seconds to round to, default 1 minute. """ if dt == None : dt = datetime.datetime.now() seconds = (dt.replace(tzinfo=None) - dt.min).seconds rounding = (seconds+roundTo/2) // roundTo * roundTo return dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond)

Vous pouvez ensuite créer une alarme par AZ. L'exemple suivant concerneuse1-az2et des alarmes pour trois points de données consécutifs d'une minute dont la valeur maximale est égale à 1 (1 est la métrique publiée lorsque le test du Khi deux détermine un biais statistiquement significatif du taux d'erreur).

{ "Type": "AWS::CloudWatch::Alarm", "Properties": { "AlarmName": "use1-az2-chi-squared", "ActionsEnabled": true, "OKActions": [], "AlarmActions": [], "InsufficientDataActions": [], "MetricName": "multi-az/chi-squared", "Namespace": "multi-az/frontend", "Statistic": "Maximum", "Dimensions": [ { "Name": "AZ-ID", "Value": "use1-az2" }, { "Name": "Action", "Value": "Index" }, { "Name": "Region", "Value": "us-east-1" }, { "Name": "Controller", "Value": "Home" } ], "Period": 60, "EvaluationPeriods": 3, "DatapointsToAlarm": 3, "Threshold": 1, "ComparisonOperator": "GreaterThanOrEqualToThreshold", "TreatMissingData": "missing" } }

Vous pouvez également créer unm-of-nalarme et combinez ces deux alarmes avec une alarme composite. Vous devez également créer les mêmes alarmes pour chaque combinaison contrôleur/action ou microservice que vous avez dans chaque zone de disponibilité. Enfin, vous pouvez ajouter l'alarme composite au Khi deux à l'alarme spécifique à la zone de disponibilité pour chaque combinaison contrôleur/action, comme indiqué dansDétection des défaillances grâce à la détection des valeurs aberrantes.