Esempi di utilizzo di Amazon Comprehend Medical AWS CLI - AWS Esempi di codice SDK

Sono disponibili altri esempi AWS SDK nel repository AWS Doc SDK Examples. GitHub

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Esempi di utilizzo di Amazon Comprehend Medical AWS CLI

I seguenti esempi di codice mostrano come eseguire azioni e implementare scenari comuni utilizzando Amazon Comprehend Medical. AWS Command Line Interface

Le azioni sono estratti di codice da programmi più grandi e devono essere eseguite nel contesto. Sebbene le azioni mostrino come richiamare le singole funzioni del servizio, è possibile visualizzarle contestualizzate negli scenari correlati.

Ogni esempio include un link al codice sorgente completo, in cui vengono fornite le istruzioni su come configurare ed eseguire il codice nel contesto.

Argomenti

Azioni

Il seguente esempio di codice mostra come usaredescribe-entities-detection-v2-job.

AWS CLI

Come descrivere un processo di rilevamento delle entità

L’esempio describe-entities-detection-v2-job seguente mostra le proprietà associate a un processo di rilevamento delle entità asincrono.

aws comprehendmedical describe-entities-detection-v2-job \ --job-id "ab9887877365fe70299089371c043b96"

Output:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "ab9887877365fe70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-18T21:20:15.614000+00:00", "EndTime": "2020-03-18T21:27:07.350000+00:00", "ExpirationTime": "2020-07-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-EntitiesDetection-ab9887877365fe70299089371c043b96/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "DetectEntitiesModelV20190930" } }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzare. describe-icd10-cm-inference-job

AWS CLI

Come descrivere un processo di inferenza di ICD-10-CM

L’esempio describe-icd10-cm-inference-job seguente descrive le proprietà del processo di inferenza richiesto con il job-id specificato.

aws comprehendmedical describe-icd10-cm-inference-job \ --job-id "5780034166536cdb52ffa3295a1b00a7"

Output:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-18T21:20:15.614000+00:00", "EndTime": "2020-05-18T21:27:07.350000+00:00", "ExpirationTime": "2020-09-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzaredescribe-phi-detection-job.

AWS CLI

Come descrivere un processo di rilevamento di PHI

L’esempio describe-phi-detection-job seguente mostra le proprietà associate a un processo di rilevamento di informazioni sanitarie protette (PHI) asincrono.

aws comprehendmedical describe-phi-detection-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

Output:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "4750034166536cdb52ffa3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-PHIDetection-4750034166536cdb52ffa3295a1b00a3/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "PHIModelV20190903" } }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-rx-norm-inference-job.

AWS CLI

Descrivere un lavoro di RxNorm inferenza

L’esempio describe-rx-norm-inference-job seguente descrive le proprietà del processo di inferenza richiesto con il job-id specificato.

aws comprehendmedical describe-rx-norm-inference-job \ --job-id "eg8199877365fc70299089371c043b96"

Output:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "g8199877365fc70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-18T21:20:15.614000+00:00", "EndTime": "2020-05-18T21:27:07.350000+00:00", "ExpirationTime": "2020-09-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.0.0" } }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzaredescribe-snomedct-inference-job.

AWS CLI

Come descrivere un processo di inferenza di SNOMED CT

L’esempio describe-snomedct-inference-job seguente descrive le proprietà del processo di inferenza richiesto con il job-id specificato.

aws comprehendmedical describe-snomedct-inference-job \ --job-id "2630034166536cdb52ffa3295a1b00a7"

Output:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "2630034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2021-12-18T21:20:15.614000+00:00", "EndTime": "2021-12-18T21:27:07.350000+00:00", "ExpirationTime": "2022-05-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzaredetect-entities-v2.

AWS CLI

Esempio 1: come rilevare le entità direttamente dal testo

L’esempio detect-entities-v2 seguente mostra le entità rilevate e le etichetta in base al tipo, direttamente dal testo di input.

aws comprehendmedical detect-entities-v2 \ --text "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy."

Output:

{ "Id": 0, "BeginOffset": 38, "EndOffset": 47, "Score": 0.9942955374717712, "Text": "Clonidine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Traits": [] }

Per ulteriori informazioni, consulta Rilevare le entità (versione 2) nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Esempio 2: come rilevare entità da un percorso di file

L’esempio detect-entities-v2 seguente mostra le entità rilevate e le etichetta in base al tipo da un percorso di file.

aws comprehendmedical detect-entities-v2 \ --text file://medical_entities.txt

Contenuto di medical_entities.txt:

{ "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy." }

Output:

{ "Id": 0, "BeginOffset": 38, "EndOffset": 47, "Score": 0.9942955374717712, "Text": "Clonidine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Traits": [] }

Per ulteriori informazioni, consulta Rilevare le entità (versione 2) nella Guida per gli sviluppatori di Amazon Comprehend Medical.

  • Per i dettagli sull'API, consulta DetectEntitiesV2 in AWS CLI Command Reference.

Il seguente esempio di codice mostra come utilizzaredetect-phi.

AWS CLI

Esempio 1: come rilevare informazioni sanitarie protette (PHI) direttamente dal testo

L’esempio detect-phi seguente mostra le entità di informazioni sanitarie protette (PHI) rilevate direttamente dal testo di input.

aws comprehendmedical detect-phi \ --text "Patient Carlos Salazar presented with rash on his upper extremities and dry cough. He lives at 100 Main Street, Anytown, USA where he works from his home as a carpenter."

Output:

{ "Entities": [ { "Id": 0, "BeginOffset": 8, "EndOffset": 21, "Score": 0.9914507269859314, "Text": "Carlos Salazar", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "NAME", "Traits": [] }, { "Id": 1, "BeginOffset": 94, "EndOffset": 109, "Score": 0.871849775314331, "Text": "100 Main Street, Anytown, USA", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "ADDRESS", "Traits": [] }, { "Id": 2, "BeginOffset": 145, "EndOffset": 154, "Score": 0.8302185535430908, "Text": "carpenter", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "PROFESSION", "Traits": [] } ], "ModelVersion": "0.0.0" }

Per ulteriori informazioni, consulta Rilevare le informazioni sanitarie protette nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Esempio 2: come rilevare informazioni sanitarie protette (PHI) direttamente da un percorso di file

L’esempio detect-phi seguente mostra le entità di informazioni sanitarie protette (PHI) rilevate da un percorso di file.

aws comprehendmedical detect-phi \ --text file://phi.txt

Contenuto di phi.txt:

"Patient Carlos Salazar presented with a rash on his upper extremities and a dry cough. He lives at 100 Main Street, Anytown, USA, where he works from his home as a carpenter."

Output:

{ "Entities": [ { "Id": 0, "BeginOffset": 8, "EndOffset": 21, "Score": 0.9914507269859314, "Text": "Carlos Salazar", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "NAME", "Traits": [] }, { "Id": 1, "BeginOffset": 94, "EndOffset": 109, "Score": 0.871849775314331, "Text": "100 Main Street, Anytown, USA", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "ADDRESS", "Traits": [] }, { "Id": 2, "BeginOffset": 145, "EndOffset": 154, "Score": 0.8302185535430908, "Text": "carpenter", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "PROFESSION", "Traits": [] } ], "ModelVersion": "0.0.0" }

Per ulteriori informazioni, consulta Rilevare le informazioni sanitarie protette nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzareinfer-icd10-cm.

AWS CLI

Esempio 1: come rilevare entità relative alle condizioni mediche e collegarle alla rappresentazione formale di ICD-10-CM direttamente dal testo

L’esempio infer-icd10-cm seguente etichetta le entità di condizioni mediche rilevate e le collega ai codici presenti nella versione 2019 della Classificazione internazionale delle malattie - modificazione clinica (ICD-10-CM).

aws comprehendmedical infer-icd10-cm \ --text "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily."

Output:

{ "Entities": [ { "Id": 0, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9475538730621338, "BeginOffset": 28, "EndOffset": 42, "Attributes": [], "Traits": [ { "Name": "SYMPTOM", "Score": 0.6724207401275635 } ], "ICD10CMConcepts": [ { "Description": "Unspecified abdominal pain", "Code": "R10.9", "Score": 0.6904221177101135 }, { "Description": "Epigastric pain", "Code": "R10.13", "Score": 0.1364113688468933 }, { "Description": "Generalized abdominal pain", "Code": "R10.84", "Score": 0.12508003413677216 }, { "Description": "Left lower quadrant pain", "Code": "R10.32", "Score": 0.10063883662223816 }, { "Description": "Lower abdominal pain, unspecified", "Code": "R10.30", "Score": 0.09933677315711975 } ] }, { "Id": 1, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9899052977561951, "BeginOffset": 75, "EndOffset": 83, "Attributes": [], "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9258432388305664 } ], "ICD10CMConcepts": [ { "Description": "Type 2 diabetes mellitus without complications", "Code": "E11.9", "Score": 0.7158446311950684 }, { "Description": "Family history of diabetes mellitus", "Code": "Z83.3", "Score": 0.5704703330993652 }, { "Description": "Family history of other endocrine, nutritional and metabolic diseases", "Code": "Z83.49", "Score": 0.19856023788452148 }, { "Description": "Type 1 diabetes mellitus with ketoacidosis without coma", "Code": "E10.10", "Score": 0.13285516202449799 }, { "Description": "Type 2 diabetes mellitus with hyperglycemia", "Code": "E11.65", "Score": 0.0993388369679451 } ] } ], "ModelVersion": "0.1.0" }

Per ulteriori informazioni, consulta Infer ICD1 0-CM nella Amazon Comprehend Medical Developer Guide.

Esempio 2: come rilevare entità di condizioni mediche e collegarle alla rappresentazione formale di ICD-10-CM da un percorso di file

L’esempio infer-icd-10-cm seguente etichetta le entità di condizioni mediche rilevate e le collega ai codici presenti nella versione 2019 della Classificazione internazionale delle malattie - modificazione clinica (ICD-10-CM).

aws comprehendmedical infer-icd10-cm \ --text file://icd10cm.txt

Contenuto di icd10cm.txt:

{ "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily." }

Output:

{ "Entities": [ { "Id": 0, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9475538730621338, "BeginOffset": 28, "EndOffset": 42, "Attributes": [], "Traits": [ { "Name": "SYMPTOM", "Score": 0.6724207401275635 } ], "ICD10CMConcepts": [ { "Description": "Unspecified abdominal pain", "Code": "R10.9", "Score": 0.6904221177101135 }, { "Description": "Epigastric pain", "Code": "R10.13", "Score": 0.1364113688468933 }, { "Description": "Generalized abdominal pain", "Code": "R10.84", "Score": 0.12508003413677216 }, { "Description": "Left lower quadrant pain", "Code": "R10.32", "Score": 0.10063883662223816 }, { "Description": "Lower abdominal pain, unspecified", "Code": "R10.30", "Score": 0.09933677315711975 } ] }, { "Id": 1, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9899052977561951, "BeginOffset": 75, "EndOffset": 83, "Attributes": [], "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9258432388305664 } ], "ICD10CMConcepts": [ { "Description": "Type 2 diabetes mellitus without complications", "Code": "E11.9", "Score": 0.7158446311950684 }, { "Description": "Family history of diabetes mellitus", "Code": "Z83.3", "Score": 0.5704703330993652 }, { "Description": "Family history of other endocrine, nutritional and metabolic diseases", "Code": "Z83.49", "Score": 0.19856023788452148 }, { "Description": "Type 1 diabetes mellitus with ketoacidosis without coma", "Code": "E10.10", "Score": 0.13285516202449799 }, { "Description": "Type 2 diabetes mellitus with hyperglycemia", "Code": "E11.65", "Score": 0.0993388369679451 } ] } ], "ModelVersion": "0.1.0" }

Per ulteriori informazioni, consulta ICD1Infer-0-CM nella Amazon Comprehend Medical Developer Guide.

  • Per i dettagli sull'API, consulta InferIcd10Cm in Command Reference.AWS CLI

Il seguente esempio di codice mostra come utilizzareinfer-rx-norm.

AWS CLI

Esempio 1: per rilevare le entità del farmaco e collegarle RxNorm direttamente dal testo

L'infer-rx-normesempio seguente mostra ed etichetta le entità terapeutiche rilevate e le collega agli identificatori concettuali (RxCUI) del database della National Library of Medicine. RxNorm

aws comprehendmedical infer-rx-norm \ --text "Patient reports taking Levothyroxine 125 micrograms p.o. once daily, but denies taking Synthroid."

Output:

{ "Entities": [ { "Id": 0, "Text": "Levothyroxine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Score": 0.9996285438537598, "BeginOffset": 23, "EndOffset": 36, "Attributes": [ { "Type": "DOSAGE", "Score": 0.9892290830612183, "RelationshipScore": 0.9997978806495667, "Id": 1, "BeginOffset": 37, "EndOffset": 51, "Text": "125 micrograms", "Traits": [] }, { "Type": "ROUTE_OR_MODE", "Score": 0.9988924860954285, "RelationshipScore": 0.998291552066803, "Id": 2, "BeginOffset": 52, "EndOffset": 56, "Text": "p.o.", "Traits": [] }, { "Type": "FREQUENCY", "Score": 0.9953463673591614, "RelationshipScore": 0.9999889135360718, "Id": 3, "BeginOffset": 57, "EndOffset": 67, "Text": "once daily", "Traits": [] } ], "Traits": [], "RxNormConcepts": [ { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet", "Code": "966224", "Score": 0.9912070631980896 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Capsule", "Code": "966405", "Score": 0.8698278665542603 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.7448257803916931 }, { "Description": "levothyroxine", "Code": "10582", "Score": 0.7050482630729675 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Levoxyl]", "Code": "966190", "Score": 0.6921631693840027 } ] }, { "Id": 4, "Text": "Synthroid", "Category": "MEDICATION", "Type": "BRAND_NAME", "Score": 0.9946461319923401, "BeginOffset": 86, "EndOffset": 95, "Attributes": [], "Traits": [ { "Name": "NEGATION", "Score": 0.5167351961135864 } ], "RxNormConcepts": [ { "Description": "Synthroid", "Code": "224920", "Score": 0.9462039470672607 }, { "Description": "Levothyroxine Sodium 0.088 MG Oral Tablet [Synthroid]", "Code": "966282", "Score": 0.8309829235076904 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.4945160448551178 }, { "Description": "Levothyroxine Sodium 0.05 MG Oral Tablet [Synthroid]", "Code": "966247", "Score": 0.3674522042274475 }, { "Description": "Levothyroxine Sodium 0.025 MG Oral Tablet [Synthroid]", "Code": "966158", "Score": 0.2588822841644287 } ] } ], "ModelVersion": "0.0.0" }

Per ulteriori informazioni, consulta Infer RxNorm nella Amazon Comprehend Medical Developer Guide.

Esempio 2: per rilevare le entità del farmaco e collegarle RxNorm da un percorso di file.

L'infer-rx-normesempio seguente mostra ed etichetta le entità terapeutiche rilevate e le collega agli identificatori concettuali (RxCUI) del database della National Library of Medicine. RxNorm

aws comprehendmedical infer-rx-norm \ --text file://rxnorm.txt

Contenuto di rxnorm.txt:

{ "Patient reports taking Levothyroxine 125 micrograms p.o. once daily, but denies taking Synthroid." }

Output:

{ "Entities": [ { "Id": 0, "Text": "Levothyroxine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Score": 0.9996285438537598, "BeginOffset": 23, "EndOffset": 36, "Attributes": [ { "Type": "DOSAGE", "Score": 0.9892290830612183, "RelationshipScore": 0.9997978806495667, "Id": 1, "BeginOffset": 37, "EndOffset": 51, "Text": "125 micrograms", "Traits": [] }, { "Type": "ROUTE_OR_MODE", "Score": 0.9988924860954285, "RelationshipScore": 0.998291552066803, "Id": 2, "BeginOffset": 52, "EndOffset": 56, "Text": "p.o.", "Traits": [] }, { "Type": "FREQUENCY", "Score": 0.9953463673591614, "RelationshipScore": 0.9999889135360718, "Id": 3, "BeginOffset": 57, "EndOffset": 67, "Text": "once daily", "Traits": [] } ], "Traits": [], "RxNormConcepts": [ { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet", "Code": "966224", "Score": 0.9912070631980896 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Capsule", "Code": "966405", "Score": 0.8698278665542603 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.7448257803916931 }, { "Description": "levothyroxine", "Code": "10582", "Score": 0.7050482630729675 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Levoxyl]", "Code": "966190", "Score": 0.6921631693840027 } ] }, { "Id": 4, "Text": "Synthroid", "Category": "MEDICATION", "Type": "BRAND_NAME", "Score": 0.9946461319923401, "BeginOffset": 86, "EndOffset": 95, "Attributes": [], "Traits": [ { "Name": "NEGATION", "Score": 0.5167351961135864 } ], "RxNormConcepts": [ { "Description": "Synthroid", "Code": "224920", "Score": 0.9462039470672607 }, { "Description": "Levothyroxine Sodium 0.088 MG Oral Tablet [Synthroid]", "Code": "966282", "Score": 0.8309829235076904 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.4945160448551178 }, { "Description": "Levothyroxine Sodium 0.05 MG Oral Tablet [Synthroid]", "Code": "966247", "Score": 0.3674522042274475 }, { "Description": "Levothyroxine Sodium 0.025 MG Oral Tablet [Synthroid]", "Code": "966158", "Score": 0.2588822841644287 } ] } ], "ModelVersion": "0.0.0" }

Per ulteriori informazioni, consulta Infer RxNorm nella Amazon Comprehend Medical Developer Guide.

  • Per i dettagli sull'API, consulta AWS CLI Command InferRxNormReference.

Il seguente esempio di codice mostra come utilizzareinfer-snomedct.

AWS CLI

Esempio: come rilevare entità e collegarle alla rappresentazione formale di SNOMED CT direttamente dal testo

L’esempio infer-snomedct seguente rileva entità mediche e le collega ai concetti della versione 2021-03 della Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT).

aws comprehendmedical infer-snomedct \ --text "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily."

Output:

{ "Entities": [ { "Id": 3, "BeginOffset": 26, "EndOffset": 40, "Score": 0.9598260521888733, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Traits": [ { "Name": "SYMPTOM", "Score": 0.6819021701812744 } ] }, { "Id": 4, "BeginOffset": 73, "EndOffset": 81, "Score": 0.9905840158462524, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9255214333534241 } ] }, { "Id": 1, "BeginOffset": 95, "EndOffset": 104, "Score": 0.6371926665306091, "Text": "Micronase", "Category": "MEDICATION", "Type": "BRAND_NAME", "Traits": [], "Attributes": [ { "Type": "FREQUENCY", "Score": 0.9761165380477905, "RelationshipScore": 0.9984188079833984, "RelationshipType": "FREQUENCY", "Id": 2, "BeginOffset": 105, "EndOffset": 110, "Text": "daily", "Category": "MEDICATION", "Traits": [] } ] } ], "UnmappedAttributes": [], "ModelVersion": "1.0.0" }

Per ulteriori informazioni, consulta InferSNOMEDCT nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarelist-entities-detection-v2-jobs.

AWS CLI

Come elencare i processi di rilevamento delle entità

L’esempio list-entities-detection-v2-jobs seguente elenca i processi di rilevamento asincroni correnti.

aws comprehendmedical list-entities-detection-v2-jobs

Output:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "ab9887877365fe70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-EntitiesDetection-ab9887877365fe70299089371c043b96/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "DetectEntitiesModelV20190930" } ] }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzare. list-icd10-cm-inference-jobs

AWS CLI

Come elencare tutti i processi di inferenza di ICD-10-CM correnti

L’esempio seguente mostra come l’operazione list-icd10-cm-inference-jobs restituisce un elenco dei processi di inferenza in batch di ICD-10-CM asincroni attualmente in corso.

aws comprehendmedical list-icd10-cm-inference-jobs

Output:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } ] }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarelist-phi-detection-jobs.

AWS CLI

Come elencare i processi di rilevamento di informazioni sanitarie protette (PHI)

L’esempio list-phi-detection-jobs seguente elenca i processi di rilevamento di informazioni sanitarie protette (PHI) attuali.

aws comprehendmedical list-phi-detection-jobs

Output:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "4750034166536cdb52ffa3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-PHIDetection-4750034166536cdb52ffa3295a1b00a3/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "PHIModelV20190903" } ] }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-rx-norm-inference-jobs.

AWS CLI

Come elencare tutti i processi di inferenza di Rx-Norm correnti

L’esempio seguente mostra come list-rx-norm-inference-jobs restituisce un elenco dei processi di inferenza in batch di Rx-Norm asincroni attualmente in corso.

aws comprehendmedical list-rx-norm-inference-jobs

Output:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "4980034166536cfb52gga3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.0.0" } ] }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarelist-snomedct-inference-jobs.

AWS CLI

Come elencare tutti i processi di inferenza di SNOMED CT

L’esempio seguente mostra come l’operazione list-snomedct-inference-jobs restituisce un elenco dei processi di inferenza in batch di SNOMED CT asincroni attualmente in corso.

aws comprehendmedical list-snomedct-inference-jobs

Output:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } ] }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarestart-entities-detection-v2-job.

AWS CLI

Come avviare un processo di rilevamento delle entità

L’esempio start-entities-detection-v2-job seguente avvia un processo di rilevamento delle entità asincrono.

aws comprehendmedical start-entities-detection-v2-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

Output:

{ "JobId": "ab9887877365fe70299089371c043b96" }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzare. start-icd10-cm-inference-job

AWS CLI

Come avviare un processo di inferenza di ICD-10-CM

L’esempio start-icd10-cm-inference-job seguente avvia un processo di analisi in batch di inferenza di ICD-10-CM.

aws comprehendmedical start-icd10-cm-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

Output:

{ "JobId": "ef7289877365fc70299089371c043b96" }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarestart-phi-detection-job.

AWS CLI

Come avviare un processo di rilevamento di PHI

L’esempio start-phi-detection-job seguente avvia un processo di rilevamento delle entità di PHI asincrono.

aws comprehendmedical start-phi-detection-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

Output:

{ "JobId": "ab9887877365fe70299089371c043b96" }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-rx-norm-inference-job.

AWS CLI

Per avviare un processo di RxNorm inferenza

L'start-rx-norm-inference-jobesempio seguente avvia un processo di analisi in batch di RxNorm inferenza.

aws comprehendmedical start-rx-norm-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

Output:

{ "JobId": "eg8199877365fc70299089371c043b96" }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarestart-snomedct-inference-job.

AWS CLI

Come avviare un processo di inferenza di SNOMED CT

L’esempio start-snomedct-inference-job seguente avvia un processo di analisi in batch di inferenza di SNOMED CT.

aws comprehendmedical start-snomedct-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

Output:

{ "JobId": "dg7289877365fc70299089371c043b96" }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarestop-entities-detection-v2-job.

AWS CLI

Come interrompere un processo di rilevamento delle entità

L’esempio stop-entities-detection-v2-job seguente interrompe un processo di rilevamento delle entità asincrono.

aws comprehendmedical stop-entities-detection-v2-job \ --job-id "ab9887877365fe70299089371c043b96"

Output:

{ "JobId": "ab9887877365fe70299089371c043b96" }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzare. stop-icd10-cm-inference-job

AWS CLI

Come interrompere un processo di inferenza di ICD-10-CM

L’esempio stop-icd10-cm-inference-job seguente interrompe un processo di analisi in batch di inferenza di ICD-10-CM.

aws comprehendmedical stop-icd10-cm-inference-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

Output:

{ "JobId": "ef7289877365fc70299089371c043b96", }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarestop-phi-detection-job.

AWS CLI

Come interrompere un processo di rilevamento di informazioni sanitarie protette (PHI)

L’esempio stop-phi-detection-job seguente interrompe un processo di rilevamento di informazioni sanitarie protette (PHI) asincrono.

aws comprehendmedical stop-phi-detection-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

Output:

{ "JobId": "ab9887877365fe70299089371c043b96" }

Per ulteriori informazioni, consulta Batch APIs nella Amazon Comprehend Medical Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-rx-norm-inference-job.

AWS CLI

Per interrompere un processo di RxNorm inferenza

L’esempio stop-rx-norm-inference-job seguente interrompe un processo di analisi in batch di inferenza di ICD-10-CM.

aws comprehendmedical stop-rx-norm-inference-job \ --job-id "eg8199877365fc70299089371c043b96"

Output:

{ "JobId": "eg8199877365fc70299089371c043b96", }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.

Il seguente esempio di codice mostra come utilizzarestop-snomedct-inference-job.

AWS CLI

Come interrompere un processo di inferenza di SNOMED CT

L’esempio stop-snomedct-inference-job seguente interrompe un processo di analisi in batch di inferenza di SNOMED CT.

aws comprehendmedical stop-snomedct-inference-job \ --job-id "8750034166436cdb52ffa3295a1b00a1"

Output:

{ "JobId": "8750034166436cdb52ffa3295a1b00a1", }

Per ulteriori informazioni, consulta Analisi in batch del collegamento delle rappresentazioni formali nella Guida per gli sviluppatori di Amazon Comprehend Medical.