Esempi per AWS Glue con AWS CLI - Esempi di codice per SDK AWS

Sono disponibili altri esempi per SDK AWS nel repository GitHub della documentazione degli esempi per SDK AWS.

Esempi per AWS Glue con AWS CLI

Gli esempi di codice seguenti mostrano come eseguire operazioni e implementare scenari comuni utilizzando AWS Command Line Interface con AWS Glue.

Le azioni sono estratti di codice da programmi più grandi e devono essere eseguite nel contesto. Sebbene le operazioni mostrino come richiamare le singole funzioni del servizio, è possibile visualizzarle contestualizzate negli scenari correlati.

Ogni esempio include un link al codice sorgente completo, in cui vengono fornite le istruzioni su come configurare ed eseguire il codice nel contesto.

Argomenti

Azioni

L’esempio di codice seguente mostra come utilizzare batch-stop-job-run.

AWS CLI

Come arrestare le esecuzioni dei processi

L’esempio batch-stop-job-run seguente avvia un processo.

aws glue batch-stop-job-run \ --job-name "my-testing-job" \ --job-run-id jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f

Output:

{ "SuccessfulSubmissions": [ { "JobName": "my-testing-job", "JobRunId": "jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f" } ], "Errors": [], "ResponseMetadata": { "RequestId": "66bd6b90-01db-44ab-95b9-6aeff0e73d88", "HTTPStatusCode": 200, "HTTPHeaders": { "date": "Fri, 16 Oct 2020 20:54:51 GMT", "content-type": "application/x-amz-json-1.1", "content-length": "148", "connection": "keep-alive", "x-amzn-requestid": "66bd6b90-01db-44ab-95b9-6aeff0e73d88" }, "RetryAttempts": 0 } }

Per ulteriori informazioni, consulta Esecuzioni di processi nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta BatchStopJobRun in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare create-connection.

AWS CLI

Come creare una connessione per i datastore AWS Glue

L’esempio create-connection seguente crea una connessione nel Catalogo dati AWS Glue che fornisce informazioni di connessione per un datastore Kafka.

aws glue create-connection \ --connection-input '{ \ "Name":"conn-kafka-custom", \ "Description":"kafka connection with ssl to custom kafka", \ "ConnectionType":"KAFKA", \ "ConnectionProperties":{ \ "KAFKA_BOOTSTRAP_SERVERS":"<Kafka-broker-server-url>:<SSL-Port>", \ "KAFKA_SSL_ENABLED":"true", \ "KAFKA_CUSTOM_CERT": "s3://bucket/prefix/cert-file.pem" \ }, \ "PhysicalConnectionRequirements":{ \ "SubnetId":"subnet-1234", \ "SecurityGroupIdList":["sg-1234"], \ "AvailabilityZone":"us-east-1a"} \ }' \ --region us-east-1 --endpoint https://glue.us-east-1.amazonaws.com

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Defining Connections in the AWS Glue Data Catalog nella Guida per sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta CreateConnection nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare create-database.

AWS CLI

Come creare un database

L’esempio create-database seguente crea un database nel Catalogo dati di AWS Glue.

aws glue create-database \ --database-input "{\"Name\":\"tempdb\"}" \ --profile my_profile \ --endpoint https://glue.us-east-1.amazonaws.com

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Definizione di un database nel catalogo dati nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta CreateDatabase in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare create-job.

AWS CLI

Come creare un processo di trasformazione dei dati

L’esempio create-job seguente crea un processo di streaming che esegue uno script archiviato in S3.

aws glue create-job \ --name my-testing-job \ --role AWSGlueServiceRoleDefault \ --command '{ \ "Name": "gluestreaming", \ "ScriptLocation": "s3://amzn-s3-demo-bucket/folder/" \ }' \ --region us-east-1 \ --output json \ --default-arguments '{ \ "--job-language":"scala", \ "--class":"GlueApp" \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Contenuto di test_script.scala.

import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }

Output:

{ "Name": "my-testing-job" }

Per ulteriori informazioni, consulta Creazione di processi in AWS Glue nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta CreateJob nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare create-table.

AWS CLI

Esempio 1: come creare una tabella per un flusso di dati Kinesis

L’esempio create-table seguente crea una tabella nel Catalogo dati di AWS Glue che descrive un flusso di dati Kinesis.

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"test-kinesis-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"my-testing-stream", \ "Parameters":{ \ "typeOfData":"kinesis","streamName":"my-testing-stream", \ "kinesisUrl":"https://kinesis.us-east-1.amazonaws.com" \ }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.

Esempio 2: come creare una tabella per un datastore Kafka

L’esempio create-table seguente crea una tabella nel Catalogo dati di AWS Glue che descrive un datastore Kafka.

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"test-kafka-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"glue-topic", \ "Parameters":{ \ "typeOfData":"kafka","topicName":"glue-topic", \ "connectionName":"my-kafka-connection" }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.apache.hadoop.hive.serde2.OpenCSVSerde"} \ }, \ "Parameters":{ \ "separatorChar":","} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.

Esempio 3: come creare una tabella per un datastore AWS S3

L’esempio create-table seguente crea una tabella nel Catalogo dati di AWS Glue che descrive un datastore AWS Simple Storage Service (AWS S3).

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"s3-output", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"s1", "Type":"string"}, \ {"Name":"s2", "Type":"int"}, \ {"Name":"s3", "Type":"string"} ], \ "Location":"s3://bucket-path/", \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta CreateTable nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare delete-job.

AWS CLI

Come eliminare un processo

L’esempio delete-job seguente elimina un processo non più necessario.

aws glue delete-job \ --job-name my-testing-job

Output:

{ "JobName": "my-testing-job" }

Per ulteriori informazioni, consulta Utilizzo dei processi nella console AWS Glue nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta DeleteJob nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare get-databases.

AWS CLI

Come elencare le definizioni di alcuni o tutti i database del Catalogo dati AWS Glue

L’esempio get-databases seguente restituisce informazioni sui database del Catalogo dati.

aws glue get-databases

Output:

{ "DatabaseList": [ { "Name": "default", "Description": "Default Hive database", "LocationUri": "file:/spark-warehouse", "CreateTime": 1602084052.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "flights-db", "CreateTime": 1587072847.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "legislators", "CreateTime": 1601415625.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "tempdb", "CreateTime": 1601498566.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" } ] }

Per ulteriori informazioni, consulta Definizione di un database nel catalogo dati nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta GetDatabases nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare get-job-run.

AWS CLI

Come ottenere informazioni relative all’esecuzione di un processo

L’esempio get-job-run seguente recupera le informazioni relative all’esecuzione di un processo.

aws glue get-job-run \ --job-name "Combine legistators data" \ --run-id jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e

Output:

{ "JobRun": { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "Combine legistators data", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } }

Per ulteriori informazioni, consulta Esecuzioni di processi nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta GetJobRun nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare get-job-runs.

AWS CLI

Come ottenere informazioni su tutte le esecuzioni di processo per un determinato processo

L’esempio get-job-runs seguente recupera informazioni sulle esecuzioni di processo per un determinato processo.

aws glue get-job-runs \ --job-name "my-testing-job"

Output:

{ "JobRuns": [ { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "my-testing-job", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_2", "Attempt": 2, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "JobName": "my-testing-job", "StartedOn": 1602811168.496, "LastModifiedOn": 1602811282.39, "CompletedOn": 1602811282.39, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 021AAB703DB20A2D; S3 Extended Request ID: teZk24Y09TkXzBvMPG502L5VJBhe9DJuWA9/TXtuGOqfByajkfL/Tlqt5JBGdEGpigAqzdMDM/U=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 110, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "Attempt": 1, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f", "JobName": "my-testing-job", "StartedOn": 1602811020.518, "LastModifiedOn": 1602811138.364, "CompletedOn": 1602811138.364, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 2671D37856AE7ABB; S3 Extended Request ID: RLJCJw20brV+PpC6GpORahyF2fp9flB5SSb2bTGPnUSPVizLXRl1PN3QZldb+v1o9qRVktNYbW8=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 113, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } ] }

Per ulteriori informazioni, consulta Esecuzioni di processi nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta GetJobRuns nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare get-job.

AWS CLI

Come recuperare le informazioni relative a un processo

L’esempio get-job seguente recupera le informazioni relative a un processo.

aws glue get-job \ --job-name my-testing-job

Output:

{ "Job": { "Name": "my-testing-job", "Role": "Glue_DefaultRole", "CreatedOn": 1602805698.167, "LastModifiedOn": 1602805698.167, "ExecutionProperty": { "MaxConcurrentRuns": 1 }, "Command": { "Name": "gluestreaming", "ScriptLocation": "s3://janetst-bucket-01/Scripts/test_script.scala", "PythonVersion": "2" }, "DefaultArguments": { "--class": "GlueApp", "--job-language": "scala" }, "MaxRetries": 0, "AllocatedCapacity": 10, "MaxCapacity": 10.0, "GlueVersion": "1.0" } }

Per ulteriori informazioni, consulta Processi nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta GetJob nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare get-plan.

AWS CLI

Come ottenere il codice generato per mappare i dati dalle tabelle di origine alle tabelle di destinazione

Il comando get-plan seguente recupera il codice generato per mappare le colonne dall’origine dati alla destinazione dei dati.

aws glue get-plan --mapping '[ \ { \ "SourcePath":"sensorid", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"sensorid", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"currenttemperature", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"currenttemperature", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"status", \ "SourceTable":"anything", \ "SourceType":"string", \ "TargetPath":"status", \ "TargetTable":"anything", \ "TargetType":"string" \ }]' \ --source '{ \ "DatabaseName":"tempdb", \ "TableName":"s3-source" \ }' \ --sinks '[ \ { \ "DatabaseName":"tempdb", \ "TableName":"my-s3-sink" \ }]' --language "scala" --endpoint https://glue.us-east-1.amazonaws.com --output "text"

Output:

import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }

Per ulteriori informazioni, consulta Modifica di script in AWS Glue nella Guida per sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta GetPlan in AWS CLI Command Reference.

L’esempio di codice seguente mostra come utilizzare get-tables.

AWS CLI

Come elencare le definizioni di alcune o tutte le tabelle del database specificato

L’esempio get-tables seguente restituisce le informazioni relative alle tabelle del database specificato.

aws glue get-tables --database-name 'tempdb'

Output:

{ "TableList": [ { "Name": "my-s3-sink", "DatabaseName": "tempdb", "CreateTime": 1602730539.0, "UpdateTime": 1602730539.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/test-s3-output/", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "s3-source", "DatabaseName": "tempdb", "CreateTime": 1602730658.0, "UpdateTime": 1602730658.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/", "Compressed": false, "NumberOfBuckets": 0, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "test-kinesis-input", "DatabaseName": "tempdb", "CreateTime": 1601507001.0, "UpdateTime": 1601507001.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "my-testing-stream", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "Parameters": { "kinesisUrl": "https://kinesis.us-east-1.amazonaws.com", "streamName": "my-testing-stream", "typeOfData": "kinesis" }, "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" } ] }

Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta GetTables nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare start-crawler.

AWS CLI

Come avviare un crawler

L’esempio start-crawler seguente avvia un crawler.

aws glue start-crawler --name my-crawler

Output:

None

Per ulteriori informazioni, consulta Definizione di crawler nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta StartCrawler nella documentazione di riferimento dei comandi della AWS CLI.

L’esempio di codice seguente mostra come utilizzare start-job-run.

AWS CLI

Come avviare l’esecuzione di un processo

L’esempio start-job-run seguente avvia un processo.

aws glue start-job-run \ --job-name my-job

Output:

{ "JobRunId": "jr_22208b1f44eb5376a60569d4b21dd20fcb8621e1a366b4e7b2494af764b82ded" }

Per ulteriori informazioni, consulta Creazione di processi nella Guida per gli sviluppatori di AWS Glue.

  • Per informazioni dettagliate sull’API, consulta StartJobRun nella documentazione di riferimento dei comandi della AWS CLI.