Sono disponibili altri esempi per SDK AWS nel repository GitHub della documentazione degli esempi per SDK AWS
Esempi per AWS Glue con AWS CLI
Gli esempi di codice seguenti mostrano come eseguire operazioni e implementare scenari comuni utilizzando AWS Command Line Interface con AWS Glue.
Le azioni sono estratti di codice da programmi più grandi e devono essere eseguite nel contesto. Sebbene le operazioni mostrino come richiamare le singole funzioni del servizio, è possibile visualizzarle contestualizzate negli scenari correlati.
Ogni esempio include un link al codice sorgente completo, in cui vengono fornite le istruzioni su come configurare ed eseguire il codice nel contesto.
Argomenti
Azioni
L’esempio di codice seguente mostra come utilizzare batch-stop-job-run.
- AWS CLI
-
Come arrestare le esecuzioni dei processi
L’esempio
batch-stop-job-runseguente avvia un processo.aws glue batch-stop-job-run \ --job-name"my-testing-job"\ --job-run-idjr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3fOutput:
{ "SuccessfulSubmissions": [ { "JobName": "my-testing-job", "JobRunId": "jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f" } ], "Errors": [], "ResponseMetadata": { "RequestId": "66bd6b90-01db-44ab-95b9-6aeff0e73d88", "HTTPStatusCode": 200, "HTTPHeaders": { "date": "Fri, 16 Oct 2020 20:54:51 GMT", "content-type": "application/x-amz-json-1.1", "content-length": "148", "connection": "keep-alive", "x-amzn-requestid": "66bd6b90-01db-44ab-95b9-6aeff0e73d88" }, "RetryAttempts": 0 } }Per ulteriori informazioni, consulta Esecuzioni di processi nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta BatchStopJobRun
in AWS CLI Command Reference.
-
L’esempio di codice seguente mostra come utilizzare create-connection.
- AWS CLI
-
Come creare una connessione per i datastore AWS Glue
L’esempio
create-connectionseguente crea una connessione nel Catalogo dati AWS Glue che fornisce informazioni di connessione per un datastore Kafka.aws glue create-connection \ --connection-input '{ \ "Name":"conn-kafka-custom", \ "Description":"kafka connection with ssl to custom kafka", \ "ConnectionType":"KAFKA", \ "ConnectionProperties":{ \ "KAFKA_BOOTSTRAP_SERVERS":"<Kafka-broker-server-url>:<SSL-Port>", \ "KAFKA_SSL_ENABLED":"true", \ "KAFKA_CUSTOM_CERT": "s3://bucket/prefix/cert-file.pem" \ }, \ "PhysicalConnectionRequirements":{ \ "SubnetId":"subnet-1234", \ "SecurityGroupIdList":["sg-1234"], \ "AvailabilityZone":"us-east-1a"} \ }' \ --regionus-east-1--endpointhttps://glue.us-east-1.amazonaws.comQuesto comando non produce alcun output.
Per ulteriori informazioni, consulta Defining Connections in the AWS Glue Data Catalog nella Guida per sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta CreateConnection
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare create-database.
- AWS CLI
-
Come creare un database
L’esempio
create-databaseseguente crea un database nel Catalogo dati di AWS Glue.aws glue create-database \ --database-input "{\"Name\":\"tempdb\"}" \ --profilemy_profile\ --endpointhttps://glue.us-east-1.amazonaws.comQuesto comando non produce alcun output.
Per ulteriori informazioni, consulta Definizione di un database nel catalogo dati nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta CreateDatabase
in AWS CLI Command Reference.
-
L’esempio di codice seguente mostra come utilizzare create-job.
- AWS CLI
-
Come creare un processo di trasformazione dei dati
L’esempio
create-jobseguente crea un processo di streaming che esegue uno script archiviato in S3.aws glue create-job \ --namemy-testing-job\ --roleAWSGlueServiceRoleDefault\ --command '{ \ "Name": "gluestreaming", \ "ScriptLocation": "s3://amzn-s3-demo-bucket/folder/" \ }' \ --regionus-east-1\ --outputjson\ --default-arguments '{ \ "--job-language":"scala", \ "--class":"GlueApp" \ }' \ --profilemy-profile\ --endpointhttps://glue.us-east-1.amazonaws.comContenuto di
test_script.scala.import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }Output:
{ "Name": "my-testing-job" }Per ulteriori informazioni, consulta Creazione di processi in AWS Glue nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta CreateJob
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare create-table.
- AWS CLI
-
Esempio 1: come creare una tabella per un flusso di dati Kinesis
L’esempio
create-tableseguente crea una tabella nel Catalogo dati di AWS Glue che descrive un flusso di dati Kinesis.aws glue create-table \ --database-nametempdb\ --table-input '{"Name":"test-kinesis-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"my-testing-stream", \ "Parameters":{ \ "typeOfData":"kinesis","streamName":"my-testing-stream", \ "kinesisUrl":"https://kinesis.us-east-1.amazonaws.com" \ }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profilemy-profile\ --endpointhttps://glue.us-east-1.amazonaws.comQuesto comando non produce alcun output.
Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.
Esempio 2: come creare una tabella per un datastore Kafka
L’esempio
create-tableseguente crea una tabella nel Catalogo dati di AWS Glue che descrive un datastore Kafka.aws glue create-table \ --database-nametempdb\ --table-input '{"Name":"test-kafka-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"glue-topic", \ "Parameters":{ \ "typeOfData":"kafka","topicName":"glue-topic", \ "connectionName":"my-kafka-connection" }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.apache.hadoop.hive.serde2.OpenCSVSerde"} \ }, \ "Parameters":{ \ "separatorChar":","} \ }' \ --profilemy-profile\ --endpointhttps://glue.us-east-1.amazonaws.comQuesto comando non produce alcun output.
Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.
Esempio 3: come creare una tabella per un datastore AWS S3
L’esempio
create-tableseguente crea una tabella nel Catalogo dati di AWS Glue che descrive un datastore AWS Simple Storage Service (AWS S3).aws glue create-table \ --database-nametempdb\ --table-input '{"Name":"s3-output", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"s1", "Type":"string"}, \ {"Name":"s2", "Type":"int"}, \ {"Name":"s3", "Type":"string"} ], \ "Location":"s3://bucket-path/", \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profilemy-profile\ --endpointhttps://glue.us-east-1.amazonaws.comQuesto comando non produce alcun output.
Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta CreateTable
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare delete-job.
- AWS CLI
-
Come eliminare un processo
L’esempio
delete-jobseguente elimina un processo non più necessario.aws glue delete-job \ --job-namemy-testing-jobOutput:
{ "JobName": "my-testing-job" }Per ulteriori informazioni, consulta Utilizzo dei processi nella console AWS Glue nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta DeleteJob
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare get-databases.
- AWS CLI
-
Come elencare le definizioni di alcuni o tutti i database del Catalogo dati AWS Glue
L’esempio
get-databasesseguente restituisce informazioni sui database del Catalogo dati.aws glue get-databasesOutput:
{ "DatabaseList": [ { "Name": "default", "Description": "Default Hive database", "LocationUri": "file:/spark-warehouse", "CreateTime": 1602084052.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "flights-db", "CreateTime": 1587072847.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "legislators", "CreateTime": 1601415625.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "tempdb", "CreateTime": 1601498566.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" } ] }Per ulteriori informazioni, consulta Definizione di un database nel catalogo dati nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta GetDatabases
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare get-job-run.
- AWS CLI
-
Come ottenere informazioni relative all’esecuzione di un processo
L’esempio
get-job-runseguente recupera le informazioni relative all’esecuzione di un processo.aws glue get-job-run \ --job-name"Combine legistators data"\ --run-idjr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5eOutput:
{ "JobRun": { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "Combine legistators data", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } }Per ulteriori informazioni, consulta Esecuzioni di processi nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta GetJobRun
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare get-job-runs.
- AWS CLI
-
Come ottenere informazioni su tutte le esecuzioni di processo per un determinato processo
L’esempio
get-job-runsseguente recupera informazioni sulle esecuzioni di processo per un determinato processo.aws glue get-job-runs \ --job-name"my-testing-job"Output:
{ "JobRuns": [ { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "my-testing-job", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_2", "Attempt": 2, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "JobName": "my-testing-job", "StartedOn": 1602811168.496, "LastModifiedOn": 1602811282.39, "CompletedOn": 1602811282.39, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 021AAB703DB20A2D; S3 Extended Request ID: teZk24Y09TkXzBvMPG502L5VJBhe9DJuWA9/TXtuGOqfByajkfL/Tlqt5JBGdEGpigAqzdMDM/U=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 110, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "Attempt": 1, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f", "JobName": "my-testing-job", "StartedOn": 1602811020.518, "LastModifiedOn": 1602811138.364, "CompletedOn": 1602811138.364, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 2671D37856AE7ABB; S3 Extended Request ID: RLJCJw20brV+PpC6GpORahyF2fp9flB5SSb2bTGPnUSPVizLXRl1PN3QZldb+v1o9qRVktNYbW8=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 113, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } ] }Per ulteriori informazioni, consulta Esecuzioni di processi nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta GetJobRuns
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare get-job.
- AWS CLI
-
Come recuperare le informazioni relative a un processo
L’esempio
get-jobseguente recupera le informazioni relative a un processo.aws glue get-job \ --job-namemy-testing-jobOutput:
{ "Job": { "Name": "my-testing-job", "Role": "Glue_DefaultRole", "CreatedOn": 1602805698.167, "LastModifiedOn": 1602805698.167, "ExecutionProperty": { "MaxConcurrentRuns": 1 }, "Command": { "Name": "gluestreaming", "ScriptLocation": "s3://janetst-bucket-01/Scripts/test_script.scala", "PythonVersion": "2" }, "DefaultArguments": { "--class": "GlueApp", "--job-language": "scala" }, "MaxRetries": 0, "AllocatedCapacity": 10, "MaxCapacity": 10.0, "GlueVersion": "1.0" } }Per ulteriori informazioni, consulta Processi nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta GetJob
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare get-plan.
- AWS CLI
-
Come ottenere il codice generato per mappare i dati dalle tabelle di origine alle tabelle di destinazione
Il comando
get-planseguente recupera il codice generato per mappare le colonne dall’origine dati alla destinazione dei dati.aws glue get-plan --mapping '[ \ { \ "SourcePath":"sensorid", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"sensorid", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"currenttemperature", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"currenttemperature", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"status", \ "SourceTable":"anything", \ "SourceType":"string", \ "TargetPath":"status", \ "TargetTable":"anything", \ "TargetType":"string" \ }]' \ --source '{ \ "DatabaseName":"tempdb", \ "TableName":"s3-source" \ }' \ --sinks '[ \ { \ "DatabaseName":"tempdb", \ "TableName":"my-s3-sink" \ }]' --language"scala"--endpointhttps://glue.us-east-1.amazonaws.com--output"text"Output:
import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }Per ulteriori informazioni, consulta Modifica di script in AWS Glue nella Guida per sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta GetPlan
in AWS CLI Command Reference.
-
L’esempio di codice seguente mostra come utilizzare get-tables.
- AWS CLI
-
Come elencare le definizioni di alcune o tutte le tabelle del database specificato
L’esempio
get-tablesseguente restituisce le informazioni relative alle tabelle del database specificato.aws glue get-tables --database-name 'tempdb'Output:
{ "TableList": [ { "Name": "my-s3-sink", "DatabaseName": "tempdb", "CreateTime": 1602730539.0, "UpdateTime": 1602730539.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/test-s3-output/", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "s3-source", "DatabaseName": "tempdb", "CreateTime": 1602730658.0, "UpdateTime": 1602730658.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/", "Compressed": false, "NumberOfBuckets": 0, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "test-kinesis-input", "DatabaseName": "tempdb", "CreateTime": 1601507001.0, "UpdateTime": 1601507001.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "my-testing-stream", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "Parameters": { "kinesisUrl": "https://kinesis.us-east-1.amazonaws.com", "streamName": "my-testing-stream", "typeOfData": "kinesis" }, "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" } ] }Per ulteriori informazioni, consulta Definizione di tabelle nel Catalogo dati AWS Glue nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta GetTables
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare start-crawler.
- AWS CLI
-
Come avviare un crawler
L’esempio
start-crawlerseguente avvia un crawler.aws glue start-crawler --namemy-crawlerOutput:
NonePer ulteriori informazioni, consulta Definizione di crawler nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta StartCrawler
nella documentazione di riferimento dei comandi della AWS CLI.
-
L’esempio di codice seguente mostra come utilizzare start-job-run.
- AWS CLI
-
Come avviare l’esecuzione di un processo
L’esempio
start-job-runseguente avvia un processo.aws glue start-job-run \ --job-namemy-jobOutput:
{ "JobRunId": "jr_22208b1f44eb5376a60569d4b21dd20fcb8621e1a366b4e7b2494af764b82ded" }Per ulteriori informazioni, consulta Creazione di processi nella Guida per gli sviluppatori di AWS Glue.
-
Per informazioni dettagliate sull’API, consulta StartJobRun
nella documentazione di riferimento dei comandi della AWS CLI.
-