Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
L'ottimizzazione automatica dei modelli, nota anche come ottimizzazione degli iperparametri, trova la versione migliore di un modello eseguendo molti processi che testano un intervallo di iperparametri sul set di dati. Scegli gli iperparametri ottimizzabili, un intervallo di valori per ciascuno di essi e un parametro obiettivo. Puoi scegliere il parametro obiettivo tra i parametri calcolati dall'algoritmo. L'ottimizzazione automatica del modello ricerca gli iperparametri scelti per trovare la combinazione di valori che restituisce il modello che ottimizza il parametro obiettivo.
Per ulteriori informazioni sull'ottimizzazione del modello, consulta Ottimizzazione automatica dei modelli con AI SageMaker .
Parametri calcolati dall'algoritmo di classificazione delle immagini
L'algoritmo di classificazione delle immagini è un algoritmo supervisionato. Restituisce un parametro di accuratezza che viene calcolato durante l’addestramento. Quando ottimizzi il modello, scegli questo parametro come obiettivo.
Nome parametro | Descrizione | Direzione dell'ottimizzazione |
---|---|---|
validation:accuracy |
Il rapporto tra il numero di previsioni corrette e il numero totale di previsioni effettuate. |
Massimizza |
Iperparametri di classificazione delle immagini ottimizzabili
Ottimizza un modello di classificazione delle immagini con i seguenti iperparametri. Gli iperparametri che hanno il maggiore impatto sui parametri obiettivo di classificazione delle immagini sono: mini_batch_size
, learning_rate
e optimizer
. Modifica gli iperparametri correlati all'ottimizzatore, come ad esempio momentum
, weight_decay
, beta_1
, beta_2
, eps
e gamma
, sulla base dell'oggetto optimizer
selezionato. Ad esempio usa beta_1
e beta_2
solo quando adam
è l'oggetto optimizer
.
Per ulteriori informazioni su quali iperparametri vengono utilizzati in ogni ottimizzatore, consulta Iperparametri di classificazione delle immagini.
Nome parametro | Tipo parametro | Intervalli consigliati |
---|---|---|
beta_1 |
ContinuousParameterRanges |
MinValue: 1e-6,: 0,99 MaxValue |
beta_2 |
ContinuousParameterRanges |
MinValue: 1e-6,: 0,99 MaxValue |
eps |
ContinuousParameterRanges |
MinValue: 1e-8,: 1,0 MaxValue |
gamma |
ContinuousParameterRanges |
MinValue: 1e-8,: 0,99 MaxValue |
learning_rate |
ContinuousParameterRanges |
MinValue: 1e-6, 0,5 MaxValue |
mini_batch_size |
IntegerParameterRanges |
MinValue: 8, 512 MaxValue |
momentum |
ContinuousParameterRanges |
MinValue: 0,0, MaxValue 0,99 |
optimizer |
CategoricalParameterRanges |
['sgd', 'adam', 'rmsprop', 'nag'] |
weight_decay |
ContinuousParameterRanges |
MinValue: 0,0, 0,99 MaxValue |