Seleziona le tue preferenze relative ai cookie

Utilizziamo cookie essenziali e strumenti simili necessari per fornire il nostro sito e i nostri servizi. Utilizziamo i cookie prestazionali per raccogliere statistiche anonime in modo da poter capire come i clienti utilizzano il nostro sito e apportare miglioramenti. I cookie essenziali non possono essere disattivati, ma puoi fare clic su \"Personalizza\" o \"Rifiuta\" per rifiutare i cookie prestazionali.

Se sei d'accordo, AWS e le terze parti approvate utilizzeranno i cookie anche per fornire utili funzionalità del sito, ricordare le tue preferenze e visualizzare contenuti pertinenti, inclusa la pubblicità pertinente. Per continuare senza accettare questi cookie, fai clic su \"Continua\" o \"Rifiuta\". Per effettuare scelte più dettagliate o saperne di più, fai clic su \"Personalizza\".

Usa lo stimatore generico SageMaker AI per estendere i contenitori DLC predefiniti

Modalità Focus
Usa lo stimatore generico SageMaker AI per estendere i contenitori DLC predefiniti - Amazon SageMaker AI

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Puoi personalizzare i contenitori SageMaker AI predefiniti o estenderli per gestire eventuali requisiti funzionali aggiuntivi per il tuo algoritmo o modello che l'immagine Docker SageMaker AI precostruita non supporta. Per un esempio di come è possibile estendere un container predefinito, consulta Estendere un container predefinito.

Per estendere un container predefinito o adattare il tuo container all'uso della libreria, devi utilizzare una delle immagini elencate in Framework supportati.

Nota

A partire dalla TensorFlow versione 2.4.1 e PyTorch 1.8.1, il framework SageMaker DLCs AI supporta i tipi di istanze abilitati per EFA. Ti consigliamo di utilizzare le immagini DLC che contengono la TensorFlow versione 2.4.1 o successiva e la versione 1.8.1 o successiva. PyTorch

Ad esempio, se lo utilizzi PyTorch, il tuo Dockerfile dovrebbe contenere un'FROMistruzione simile alla seguente:

# SageMaker AI PyTorch image FROM 763104351884.dkr.ecr.<aws-region>.amazonaws.com/pytorch-training:<image-tag> ENV PATH="/opt/ml/code:${PATH}" # this environment variable is used by the SageMaker AI PyTorch container to determine our user code directory. ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code # /opt/ml and all subdirectories are utilized by SageMaker AI, use the /code subdirectory to store your user code. COPY train.py /opt/ml/code/train.py # Defines cifar10.py as script entrypoint ENV SAGEMAKER_PROGRAM train.py

Puoi personalizzare ulteriormente il tuo contenitore Docker per lavorare con l' SageMaker intelligenza artificiale utilizzando il toolkit di SageMaker formazione e il file binario della libreria parallela di SageMaker dati distribuiti AI. Per ulteriori informazioni, consulta le istruzioni nella sezione seguente.

PrivacyCondizioni del sitoPreferenze cookie
© 2025, Amazon Web Services, Inc. o società affiliate. Tutti i diritti riservati.