AWS CLI を使用した Amazon Textract の例
次のコード例は、Amazon Textract で AWS Command Line Interface を使用してアクションを実行し、一般的なシナリオを実装する方法を示しています。
アクションはより大きなプログラムからのコードの抜粋であり、コンテキスト内で実行する必要があります。アクションは個々のサービス機能を呼び出す方法を示していますが、コンテキスト内のアクションは、関連するシナリオで確認できます。
各例には、完全なソースコードへのリンクが含まれており、そこからコンテキストにおけるコードの設定方法と実行方法に関する手順を確認できます。
トピック
アクション
次の例は、analyze-document
を使用する方法を説明しています。
- AWS CLI
-
ドキュメント内のテキストを分析するには
次の
analyze-document
の例は、ドキュメント内のテキストを分析する方法を示しています。Linux/macOS:
aws textract analyze-document \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
'Windows :
aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region
region-name
出力:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }
詳細については、「Amazon Textract デベロッパーガイド」の「Amazon Textract を使用したドキュメントテキストの分析」を参照してください。
-
API の詳細については、AWS CLI コマンドリファレンスの「AnalyzeDocument
」を参照してください。
-
次の例は、detect-document-text
を使用する方法を説明しています。
- AWS CLI
-
ドキュメント内のテキストを検出するには
次の
detect-document-text
の例は、ドキュメント内のテキストを検出する方法を示しています。Linux/macOS:
aws textract detect-document-text \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
'Windows :
aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
出力:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }
詳細については、「Amazon Textract デベロッパーガイド」の「ドキュメントのテキストの検出」を参照してください。
-
API の詳細については、AWS CLI コマンドリファレンスの「DetectDocumentText
」を参照してください。
-
次の例は、get-document-analysis
を使用する方法を説明しています。
- AWS CLI
-
複数ページのドキュメントの非同期テキスト分析の結果を取得するには
次の
get-document-analysis
の例は、複数ページのドキュメントの非同期テキスト分析の結果を取得します。aws textract get-document-analysis \ --job-id
df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b
\ --max-results1000
出力:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
詳細については、「Amazon Textract デベロッパーガイド」の「複数ページドキュメント内のテキストの検出または分析」を参照してください。
-
API の詳細については、AWS CLI コマンドリファレンスの「GetDocumentAnalysis
」を参照してください。
-
次の例は、get-document-text-detection
を使用する方法を説明しています。
- AWS CLI
-
複数ページのドキュメントの非同期テキスト検出の結果を取得するには
次の
get-document-text-detection
の例は、複数ページのドキュメントの非同期テキスト検出の結果を取得します。aws textract get-document-text-detection \ --job-id
57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9
\ --max-results1000
出力
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
詳細については、「Amazon Textract デベロッパーガイド」の「複数ページドキュメント内のテキストの検出または分析」を参照してください。
-
API の詳細については、「AWS CLI コマンドリファレンス」の「GetDocumentTextDetection
」を参照してください。
-
次の例は、start-document-analysis
を使用する方法を説明しています。
- AWS CLI
-
複数ページのドキュメント内のテキストの分析を開始するには
次の
start-document-analysis
の例は、複数ページのドキュメントの非同期テキスト分析を開始する方法を示しています。Linux/macOS:
aws textract start-document-analysis \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Windows :
aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
出力:
{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }
詳細については、「Amazon Textract デベロッパーガイド」の「複数ページドキュメント内のテキストの検出または分析」を参照してください。
-
API の詳細については、AWS CLI コマンドリファレンスの「StartDocumentAnalysis
」を参照してください。
-
次の例は、start-document-text-detection
を使用する方法を説明しています。
- AWS CLI
-
複数ページのドキュメント内のテキストの検出を開始するには
次の
start-document-text-detection
の例は、複数ページのドキュメントの非同期テキスト検出を開始する方法を示しています。Linux/macOS:
aws textract start-document-text-detection \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleARN"
Windows :
aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
出力:
{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }
詳細については、「Amazon Textract デベロッパーガイド」の「複数ページドキュメント内のテキストの検出または分析」を参照してください。
-
API の詳細については、AWS CLI コマンドリファレンスの「StartDocumentTextDetection
」を参照してください。
-