オブジェクト検出 TensorFlow モデルを調整する - Amazon SageMaker

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

オブジェクト検出 TensorFlow モデルを調整する

自動モデル調整は、ハイパーパラメータ調整とも呼ばれ、データセットのさまざまなハイパーパラメータをテストする多数のジョブを実行して、モデルの最適なバージョンを見つけます。調整可能なハイパーパラメータ、それぞれの値の範囲、および目標メトリクスを選択します。アルゴリズムが計算するメトリクスから目標メトリクスを選択します。自動モデル調整は、選択されたハイパーパラメータを検索して、目標メトリクスを最適化するモデルになる値の組み合わせを見つけます。

モデル調整の詳細については、「を使用した自動モデル調整 SageMaker」を参照してください。

オブジェクト検出 - TensorFlow アルゴリズムによって計算されるメトリクス

オブジェクト検出アルゴリズムによって計算されるメトリクスについては、次の表を参照してください TensorFlow 。

メトリクス名 説明 最適化の方向 正規表現パターン
validation:localization_loss

ボックス予測におけるローカリゼーションの損失。

最小化

Val_localization=([0-9\\.]+)

調整可能なオブジェクト検出 - TensorFlow ハイパーパラメータ

以下のハイパーパラメータを使用してオブジェクト検出モデルを調整します。オブジェクト検出の目標メトリクスに最も大きな影響を与えるハイパーパラメータは、batch_sizelearning_rate、および optimizer です。選択した optimizer に基づいて、momentumregularizers_l2beta_1beta_2eps などのオプティマイザ関連のハイパーパラメータを調整します。たとえば、adamoptimizer である場合にのみ beta_1beta_2 を使用します。

optimizer で使用されるハイパーパラメータの詳細については、「オブジェクト検出 - TensorFlow ハイパーパラメータ」を参照してください。

Parameter Name パラメータタイプ 推奨範囲
batch_size

IntegerParameterRanges

MinValue: 8、 MaxValue: 512

beta_1

ContinuousParameterRanges

MinValue: 1e-6、 MaxValue: 0.999

beta_2

ContinuousParameterRanges

MinValue: 1e-6、 MaxValue: 0.999

eps

ContinuousParameterRanges

MinValue: 1e-8、 MaxValue: 1.0

learning_rate

ContinuousParameterRanges

MinValue: 1e-6、 MaxValue: 0.5

momentum

ContinuousParameterRanges

MinValue: 0.0、 MaxValue: 0.999

optimizer

CategoricalParameterRanges

['sgd', ‘adam’, ‘rmsprop’, 'nesterov', 'adagrad', 'adadelta']

regularizers_l2

ContinuousParameterRanges

MinValue: 0.0、 MaxValue: 0.999

train_only_on_top_layer

CategoricalParameterRanges

['True', 'False']

initial_accumulator_value

CategoricalParameterRanges

MinValue: 0.0、 MaxValue: 0.999