사용 사례 처리 - Amazon Bedrock

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

사용 사례 처리

Amazon Bedrock Data Automation을 사용하면 명령줄 인터페이스(CLI)를 통해 문서, 이미지, 오디오 및 비디오를 처리할 수 있습니다. 각 형식에 대해 워크플로는 프로젝트 생성, 분석 호출, 결과 검색으로 구성됩니다.

원하는 방법의 탭을 선택한 다음 다음 단계를 따릅니다.

Documents

W2에서 데이터 추출

추출할 레이아웃 및 데이터 필드를 보여주는 표준 필드가 있는 샘플 W2 양식입니다.

개인 식별 정보가 포함된 샘플 여권

W2 양식을 처리할 때 예제 스키마는 다음과 같습니다.

{ "class": "W2TaxForm", "description": "Simple schema for extracting key information from W2 tax forms", "properties": { "employerName": { "type": "string", "inferenceType": "explicit", "instruction": "The employer's company name" }, "employeeSSN": { "type": "string", "inferenceType": "explicit", "instruction": "The employee's Social Security Number (SSN)" }, "employeeName": { "type": "string", "inferenceType": "explicit", "instruction": "The employee's full name" }, "wagesAndTips": { "type": "number", "inferenceType": "explicit", "instruction": "Wages, tips, other compensation (Box 1)" }, "federalIncomeTaxWithheld": { "type": "number", "inferenceType": "explicit", "instruction": "Federal income tax withheld (Box 2)" }, "taxYear": { "type": "string", "inferenceType": "explicit", "instruction": "The tax year for this W2 form" } } }

W2 처리를 호출하는 명령은 다음과 유사합니다.

aws bedrock-data-automation-runtime invoke-data-automation-async \ --input-configuration '{ "s3Uri": "s3://w2-processing-bucket-301678011486/input/W2.png" }' \ --output-configuration '{ "s3Uri": "s3://w2-processing-bucket-301678011486/output/" }' \ --data-automation-configuration '{ "dataAutomationProjectArn": "Amazon Resource Name (ARN)", "stage": "LIVE" }' \ --data-automation-profile-arn "Amazon Resource Name (ARN):data-automation-profile/default"

예상 출력의 예는 다음과 같습니다.

{ "documentType": "W2TaxForm", "extractedData": { "employerName": "The Big Company", "employeeSSN": "123-45-6789", "employeeName": "Jane Doe", "wagesAndTips": 48500.00, "federalIncomeTaxWithheld": 6835.00, "taxYear": "2014" }, "confidence": { "employerName": 0.99, "employeeSSN": 0.97, "employeeName": 0.99, "wagesAndTips": 0.98, "federalIncomeTaxWithheld": 0.97, "taxYear": 0.99 }, "metadata": { "processingTimestamp": "2025-07-23T23:15:30Z", "documentId": "w2-12345", "modelId": "amazon.titan-document-v1", "pageCount": 1 } }
Images

여행 광고 예제

사용자가 광고에서 정보를 추출하는 방법을 보여주는 샘플 이미지입니다.

여행 광고의 예제 스키마는 다음과 같습니다.

{ "class": "TravelAdvertisement", "description": "Schema for extracting information from travel advertisement images", "properties": { "destination": { "type": "string", "inferenceType": "explicit", "instruction": "The name of the travel destination being advertised" }, "tagline": { "type": "string", "inferenceType": "explicit", "instruction": "The main promotional text or tagline in the advertisement" }, "landscapeType": { "type": "string", "inferenceType": "explicit", "instruction": "The type of landscape shown (e.g., mountains, beach, forest, etc.)" }, "waterFeatures": { "type": "string", "inferenceType": "explicit", "instruction": "Description of any water features visible in the image (ocean, lake, river, etc.)" }, "dominantColors": { "type": "string", "inferenceType": "explicit", "instruction": "The dominant colors present in the image" }, "advertisementType": { "type": "string", "inferenceType": "explicit", "instruction": "The type of travel advertisement (e.g., destination promotion, tour package, etc.)" } } }

여행 광고 처리를 호출하는 명령은 다음과 유사합니다.

aws bedrock-data-automation-runtime invoke-data-automation-async \ --input-configuration '{ "s3Uri": "s3://travel-ads-bucket-301678011486/input/TravelAdvertisement.jpg" }' \ --output-configuration '{ "s3Uri": "s3://travel-ads-bucket-301678011486/output/" }' \ --data-automation-configuration '{ "dataAutomationProjectArn": "Amazon Resource Name (ARN)", "stage": "LIVE" }' \ --data-automation-profile-arn "Amazon Resource Name (ARN):data-automation-profile/default"

예상 출력의 예는 다음과 같습니다.

{ "documentType": "TravelAdvertisement", "extractedData": { "destination": "Kauai", "tagline": "Travel to KAUAI", "landscapeType": "Coastal mountains with steep cliffs and valleys", "waterFeatures": "Turquoise ocean with white surf along the coastline", "dominantColors": "Green, blue, turquoise, brown, white", "advertisementType": "Destination promotion" }, "confidence": { "destination": 0.98, "tagline": 0.99, "landscapeType": 0.95, "waterFeatures": 0.97, "dominantColors": 0.96, "advertisementType": 0.92 }, "metadata": { "processingTimestamp": "2025-07-23T23:45:30Z", "documentId": "travel-ad-12345", "modelId": "amazon.titan-image-v1", "imageWidth": 1920, "imageHeight": 1080 } }
Audio

전화 통화 트랜스크립션

전화 통화의 예제 스키마는 다음과 같습니다.

{ "class": "AudioRecording", "description": "Schema for extracting information from AWS customer call recordings", "properties": { "callType": { "type": "string", "inferenceType": "explicit", "instruction": "The type of call (e.g., technical support, account management, consultation)" }, "participants": { "type": "string", "inferenceType": "explicit", "instruction": "The number and roles of participants in the call" }, "mainTopics": { "type": "string", "inferenceType": "explicit", "instruction": "The main topics or AWS services discussed during the call" }, "customerIssues": { "type": "string", "inferenceType": "explicit", "instruction": "Any customer issues or pain points mentioned during the call" }, "actionItems": { "type": "string", "inferenceType": "explicit", "instruction": "Action items or next steps agreed upon during the call" }, "callDuration": { "type": "string", "inferenceType": "explicit", "instruction": "The duration of the call" }, "callSummary": { "type": "string", "inferenceType": "explicit", "instruction": "A brief summary of the entire call" } } }

전화 통화 처리를 호출하는 명령은 다음과 유사합니다.

aws bedrock-data-automation-runtime invoke-data-automation-async \ --input-configuration '{ "s3Uri": "s3://audio-analysis-bucket-301678011486/input/AWS_TCA-Call-Recording-2.wav" }' \ --output-configuration '{ "s3Uri": "s3://audio-analysis-bucket-301678011486/output/" }' \ --data-automation-configuration '{ "dataAutomationProjectArn": "Amazon Resource Name (ARN)", "stage": "LIVE" }' \ --data-automation-profile-arn "Amazon Resource Name (ARN):data-automation-profile/default"

예상 출력의 예는 다음과 같습니다.

{ "documentType": "AudioRecording", "extractedData": { "callType": "Technical consultation", "participants": "3 participants: AWS Solutions Architect, AWS Technical Account Manager, and Customer IT Director", "mainTopics": "AWS Bedrock implementation, data processing pipelines, model fine-tuning, and cost optimization", "customerIssues": "Integration challenges with existing ML infrastructure, concerns about latency for real-time processing, questions about data security compliance", "actionItems": [ "AWS team to provide documentation on Bedrock data processing best practices", "Customer to share their current ML architecture diagrams", "Schedule follow-up meeting to review implementation plan", "AWS to provide cost estimation for proposed solution" ], "callDuration": "45 minutes and 23 seconds", "callSummary": "Technical consultation call between AWS team and customer regarding implementation of AWS Bedrock for their machine learning workloads. Discussion covered integration approaches, performance optimization, security considerations, and next steps for implementation planning." }, "confidence": { "callType": 0.94, "participants": 0.89, "mainTopics": 0.92, "customerIssues": 0.87, "actionItems": 0.85, "callDuration": 0.99, "callSummary": 0.93 }, "metadata": { "processingTimestamp": "2025-07-24T00:30:45Z", "documentId": "audio-12345", "modelId": "amazon.titan-audio-v1", "audioDuration": "00:45:23", "audioFormat": "WAV", "sampleRate": "44.1 kHz" }, "transcript": { "segments": [ { "startTime": "00:00:03", "endTime": "00:00:10", "speaker": "Speaker 1", "text": "Hello everyone, thank you for joining today's call about implementing AWS Bedrock for your machine learning workloads." }, { "startTime": "00:00:12", "endTime": "00:00:20", "speaker": "Speaker 2", "text": "Thanks for having us. We're really interested in understanding how Bedrock can help us streamline our document processing pipeline." }, { "startTime": "00:00:22", "endTime": "00:00:35", "speaker": "Speaker 3", "text": "Yes, and specifically we'd like to discuss integration with our existing systems and any potential latency concerns for real-time processing requirements." } // Additional transcript segments would continue here ] } }
Video

비디오 처리

비디오 스키마의 예는 다음과 같습니다.

{ "class": "VideoContent", "description": "Schema for extracting information from video content", "properties": { "title": { "type": "string", "inferenceType": "explicit", "instruction": "The title or name of the video content" }, "contentType": { "type": "string", "inferenceType": "explicit", "instruction": "The type of content (e.g., tutorial, competition, documentary, advertisement)" }, "mainSubject": { "type": "string", "inferenceType": "explicit", "instruction": "The main subject or focus of the video" }, "keyPersons": { "type": "string", "inferenceType": "explicit", "instruction": "Key people appearing in the video (hosts, participants, etc.)" }, "keyScenes": { "type": "string", "inferenceType": "explicit", "instruction": "Description of important scenes or segments in the video" }, "audioElements": { "type": "string", "inferenceType": "explicit", "instruction": "Description of notable audio elements (music, narration, dialogue)" }, "summary": { "type": "string", "inferenceType": "explicit", "instruction": "A brief summary of the video content" } } }

비디오 처리를 호출하는 명령은 다음과 유사합니다.

aws bedrock-data-automation-runtime invoke-data-automation-async \ --input-configuration '{ "s3Uri": "s3://video-analysis-bucket-301678011486/input/MakingTheCut.mp4", "assetProcessingConfiguration": { "video": { "segmentConfiguration": { "timestampSegment": { "startTimeMillis": 0, "endTimeMillis": 300000 } } } } }' \ --output-configuration '{ "s3Uri": "s3://video-analysis-bucket-301678011486/output/" }' \ --data-automation-configuration '{ "dataAutomationProjectArn": "Amazon Resource Name (ARN)", "stage": "LIVE" }' \ --data-automation-profile-arn "Amazon Resource Name (ARN):data-automation-profile/default"

예상 출력의 예는 다음과 같습니다.

{ "documentType": "VideoContent", "extractedData": { "title": "Making the Cut", "contentType": "Fashion design competition", "mainSubject": "Fashion designers competing to create the best clothing designs", "keyPersons": "Heidi Klum, Tim Gunn, and various fashion designer contestants", "keyScenes": [ "Introduction of the competition and contestants", "Design challenge announcement", "Designers working in their studios", "Runway presentation of designs", "Judges' critique and elimination decision" ], "audioElements": "Background music, host narration, contestant interviews, and design feedback discussions", "summary": "An episode of 'Making the Cut' fashion competition where designers compete in a challenge to create innovative designs. The episode includes the challenge announcement, design process, runway presentation, and judging." }, "confidence": { "title": 0.99, "contentType": 0.95, "mainSubject": 0.92, "keyPersons": 0.88, "keyScenes": 0.90, "audioElements": 0.87, "summary": 0.94 }, "metadata": { "processingTimestamp": "2025-07-24T00:15:30Z", "documentId": "video-12345", "modelId": "amazon.titan-video-v1", "videoDuration": "00:45:23", "analyzedSegment": "00:00:00 - 00:05:00", "resolution": "1920x1080" }, "transcript": { "segments": [ { "startTime": "00:00:05", "endTime": "00:00:12", "speaker": "Heidi Klum", "text": "Welcome to Making the Cut, where we're searching for the next great global fashion brand." }, { "startTime": "00:00:15", "endTime": "00:00:25", "speaker": "Tim Gunn", "text": "Designers, for your first challenge, you'll need to create a look that represents your brand and can be sold worldwide." } // Additional transcript segments would continue here ] } }