쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

Amazon Redshift에서 읽고 쓰기 - Amazon EMR

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

Amazon Redshift에서 읽고 쓰기

다음 코드 예제는 데이터 소스 API와 SparkSQL을 통해 Amazon Redshift 데이터베이스에서 샘플 데이터를 읽고 쓰는 데 PySpark를 사용합니다.

Data source API

PySpark를 사용하여 데이터 소스 API를 통해 Amazon Redshift 데이터베이스에서 샘플 데이터를 읽고 씁니다.

import boto3 from pyspark.sql import SQLContext sc = # existing SparkContext sql_context = SQLContext(sc) url = "jdbc:redshift:iam://redshifthost:5439/database" aws_iam_role_arn = "arn:aws:iam::accountID:role/roleName" df = sql_context.read \ .format("io.github.spark_redshift_community.spark.redshift") \ .option("url", url) \ .option("dbtable", "tableName") \ .option("tempdir", "s3://path/for/temp/data") \ .option("aws_iam_role", "aws_iam_role_arn") \ .load() df.write \ .format("io.github.spark_redshift_community.spark.redshift") \ .option("url", url) \ .option("dbtable", "tableName_copy") \ .option("tempdir", "s3://path/for/temp/data") \ .option("aws_iam_role", "aws_iam_role_arn") \ .mode("error") \ .save()
SparkSQL

PySpark를 사용하여 SparkSQL을 통해 Amazon Redshift 데이터베이스에서 샘플 데이터를 읽고 씁니다.

import boto3 import json import sys import os from pyspark.sql import SparkSession spark = SparkSession \ .builder \ .enableHiveSupport() \ .getOrCreate() url = "jdbc:redshift:iam://redshifthost:5439/database" aws_iam_role_arn = "arn:aws:iam::accountID:role/roleName" bucket = "s3://path/for/temp/data" tableName = "tableName" # Redshift table name s = f"""CREATE TABLE IF NOT EXISTS {tableName} (country string, data string) USING io.github.spark_redshift_community.spark.redshift OPTIONS (dbtable '{tableName}', tempdir '{bucket}', url '{url}', aws_iam_role '{aws_iam_role_arn}' ); """ spark.sql(s) columns = ["country" ,"data"] data = [("test-country","test-data")] df = spark.sparkContext.parallelize(data).toDF(columns) # Insert data into table df.write.insertInto(tableName, overwrite=False) df = spark.sql(f"SELECT * FROM {tableName}") df.show()

PySpark를 사용하여 데이터 소스 API를 통해 Amazon Redshift 데이터베이스에서 샘플 데이터를 읽고 씁니다.

import boto3 from pyspark.sql import SQLContext sc = # existing SparkContext sql_context = SQLContext(sc) url = "jdbc:redshift:iam://redshifthost:5439/database" aws_iam_role_arn = "arn:aws:iam::accountID:role/roleName" df = sql_context.read \ .format("io.github.spark_redshift_community.spark.redshift") \ .option("url", url) \ .option("dbtable", "tableName") \ .option("tempdir", "s3://path/for/temp/data") \ .option("aws_iam_role", "aws_iam_role_arn") \ .load() df.write \ .format("io.github.spark_redshift_community.spark.redshift") \ .option("url", url) \ .option("dbtable", "tableName_copy") \ .option("tempdir", "s3://path/for/temp/data") \ .option("aws_iam_role", "aws_iam_role_arn") \ .mode("error") \ .save()
프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.