쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

[QA.TEM.4] Implement a unified test data repository for enhanced test efficiency - DevOps Guidance
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

[QA.TEM.4] Implement a unified test data repository for enhanced test efficiency

Category: RECOMMENDED

Test data refers to specific input datasets designed for testing purposes to simulate real-world scenarios. Centralizing test datasets in a unified storage location, such as a data lake or source code repository, ensures they are stored, normalized, and managed effectively. 

Test data might be stored differently depending on your specific use case. It can be stored centrally for a single team who maintains multiple microservices or related products, or centrally governed for multiple teams to source test data from. By centralizing, teams can reuse the same test data across different test cases, minimizing the time and effort spent preparing test data for usage.

Create a centralized, version-controlled system to store test datasets, such as a data lake or source code repository. Ensure the data in this central repository is sanitized and approved for non-production environments. When test environments are set up and test cases are run, use delivery pipelines and automated tools to source test data directly from this centralized source.

Outdated test datasets can result in ineffective tests and inaccurate results. Regularly maintain the centralized test data source by updating it either periodically or when there are changes in systems data schemas, features, functions, or dependencies. Treat the test data as a shared resource with contracts in place to prevent disrupting other teams or systems. Document any changes made to test data and notify any dependent teams of these changes. Maintaining up-to-date test data allows for more effective issue identification and resolution, leading to higher-quality software.

We recommend automating the update process where feasible using data pipelines, for example, by pulling recent production data and obfuscating it as changes are made. Protect sensitive data by implementing a data obfuscation plan that transforms sensitive production data into similar, but non-sensitive, test data. Use obfuscation techniques, such as masking, encrypting, or tokenizing, to sanitize the production data prior to it being used in non-production environments. This approach helps uphold data privacy and mitigates potential security risks during testing.

Related information:

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.