쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

Networking architecture - Build a Secure Enterprise Machine Learning Platform on AWS
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

Networking architecture

Enterprise ML platforms built on AWS normally have requirements to access on-premises resources, such as on-premises code repositories or databases. Secure communications such as AWS Direct Connect or VPN should be established. To enable flexible network routing across different AWS accounts and the on-prem network, consider using the AWS Transit Gateway service. If you want all internet traffic to go through your corporate network, configure an internet egress route to allow internet traffic to go through the on-premises network. The following figure shows a network design with multiple accounts and an on-premises environment.

A diagram showing networking design.

Networking design

For enhanced network security, you can configure resources in different AWS accounts to communicate via the Amazon Virtual Private Cloud (VPC) using VPC endpoints. A VPC endpoint enables private connections between your VPC and supported AWS services. There are different types of VPC endpoints such as interface endpoint and gateway endpoint. An interface endpoint is an elastic network interface (ENI) with a private IP address from the IP address range of your subnet that you can control network access using a VPC security group. To access resources inside a VPC, you need to establish a route to the subnet where your interface endpoint is located. A gateway endpoint is a gateway that you specify as a target for a route in your route table. You can control access to resources behind a VPC endpoint using a VPC endpoint policy.

For data scientists to use Amazon SageMaker AI, AWS recommend the following VPC endpoints:

The following figure shows the networking architecture for SageMaker AI with private endpoints for all the dependent services.

A diagram showing networking architecture for Amazon SageMaker AI Studio inside a VPC.

Networking architecture for Amazon SageMaker AI Studio inside a VPC (Not all VPC endpoints are shown for simplicity)

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.