AWS services or capabilities described in AWS Documentation may vary by region/location. Click Getting Started with Amazon AWS to see specific differences applicable to the China (Beijing) Region.
New-SMAutoMLJobV2-AutoMLJobName <String>-Transformations_Aggregation <Hashtable>-CandidateGenerationConfig_AlgorithmsConfig <AutoMLAlgorithmConfig[]>-ModelDeployConfig_AutoGenerateEndpointName <Boolean>-AutoMLJobInputDataConfig <AutoMLJobChannel[]>-TextClassificationJobConfig_ContentColumn <String>-SecurityConfig_EnableInterContainerTrafficEncryption <Boolean>-ModelDeployConfig_EndpointName <String>-TabularJobConfig_FeatureSpecificationS3Uri <String>-TimeSeriesForecastingJobConfig_FeatureSpecificationS3Uri <String>-Transformations_Filling <Hashtable>-TimeSeriesForecastingJobConfig_ForecastFrequency <String>-TimeSeriesForecastingJobConfig_ForecastHorizon <Int32>-TimeSeriesForecastingJobConfig_ForecastQuantile <String[]>-TabularJobConfig_GenerateCandidateDefinitionsOnly <Boolean>-TimeSeriesConfig_GroupingAttributeName <String[]>-TimeSeriesForecastingJobConfig_HolidayConfig <HolidayConfigAttributes[]>-TimeSeriesConfig_ItemIdentifierAttributeName <String>-OutputDataConfig_KmsKeyId <String>-AutoMLProblemTypeConfig_ImageClassificationJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSecond <Int32>-CompletionCriteria_MaxAutoMLJobRuntimeInSecond <Int32>-AutoMLProblemTypeConfig_TextClassificationJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSecond <Int32>-AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSecond <Int32>-AutoMLProblemTypeConfig_ImageClassificationJobConfig_CompletionCriteria_MaxCandidate <Int32>-CompletionCriteria_MaxCandidate <Int32>-AutoMLProblemTypeConfig_TextClassificationJobConfig_CompletionCriteria_MaxCandidate <Int32>-AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_CompletionCriteria_MaxCandidate <Int32>-AutoMLProblemTypeConfig_ImageClassificationJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSecond <Int32>-CompletionCriteria_MaxRuntimePerTrainingJobInSecond <Int32>-AutoMLProblemTypeConfig_TextClassificationJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSecond <Int32>-AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSecond <Int32>-AutoMLJobObjective_MetricName <AutoMLMetricEnum>-TabularJobConfig_Mode <AutoMLMode>-TabularJobConfig_ProblemType <ProblemType>-RoleArn <String>-OutputDataConfig_S3OutputPath <String>-TabularJobConfig_SampleWeightAttributeName <String>-VpcConfig_SecurityGroupId <String[]>-VpcConfig_Subnet <String[]>-Tag <Tag[]>-TabularJobConfig_TargetAttributeName <String>-TimeSeriesConfig_TargetAttributeName <String>-TextClassificationJobConfig_TargetLabelColumn <String>-TimeSeriesConfig_TimestampAttributeName <String>-DataSplitConfig_ValidationFraction <Single>-SecurityConfig_VolumeKmsKeyId <String>-Select <String>-PassThru <SwitchParameter>-Force <SwitchParameter>-ClientConfig <AmazonSageMakerConfig>
CreateAutoMLJobV2
can manage tabular problem types identical to those of its previous version CreateAutoMLJob
, as well as non-tabular problem types such as image or text classification.
Find guidelines about how to migrate a CreateAutoMLJob
to CreateAutoMLJobV2
in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.
For the list of available problem types supported by CreateAutoMLJobV2
, see AutoMLProblemTypeConfig.
You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2. CreateAutoMLJob
input parameters. The supported formats depend on the problem type:S3Prefix
, ManifestFile
.S3Prefix
, ManifestFile
, AugmentedManifestFile
.S3Prefix
.S3Prefix
.Required? | True |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | True |
Position? | 1 |
Accept pipeline input? | True (ByValue, ByPropertyName) |
MSE
.F1
.Accuracy
.Accuracy
AverageWeightedQuantileLoss
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_ImageClassificationJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSeconds, ImageClassificationJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSeconds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_ImageClassificationJobConfig_CompletionCriteria_MaxCandidates, ImageClassificationJobConfig_CompletionCriteria_MaxCandidates |
CreateAutoMLJobV2
), this field controls the runtime of the job candidate. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_ImageClassificationJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSeconds, ImageClassificationJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSeconds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TextClassificationJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSeconds, TextClassificationJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSeconds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TextClassificationJobConfig_CompletionCriteria_MaxCandidates, TextClassificationJobConfig_CompletionCriteria_MaxCandidates |
CreateAutoMLJobV2
), this field controls the runtime of the job candidate. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TextClassificationJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSeconds, TextClassificationJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSeconds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSeconds, TimeSeries_CompletionCriteria_MaxAutoMLJobRuntimeInSeconds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_CompletionCriteria_MaxCandidates, TimeSeries_CompletionCriteria_MaxCandidates |
CreateAutoMLJobV2
), this field controls the runtime of the job candidate. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSeconds, TimeSeries_CompletionCriteria_MaxRuntimePerTrainingJobInSeconds |
TabularJobConfig.Mode
.AlgorithmsConfig
should not be set in AUTO
training mode.AlgorithmsConfig
is provided, one AutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for AutoMLAlgorithms
is empty, CandidateGenerationConfig
uses the full set of algorithms for the given training mode.AlgorithmsConfig
is not provided, CandidateGenerationConfig
uses the full set of algorithms for the given training mode.Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_CandidateGenerationConfig_AlgorithmsConfig |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_CompletionCriteria_MaxAutoMLJobRuntimeInSeconds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_CompletionCriteria_MaxCandidates |
CreateAutoMLJobV2
), this field controls the runtime of the job candidate. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_CompletionCriteria_MaxRuntimePerTrainingJobInSeconds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
True
to automatically generate an endpoint name for a one-click Autopilot model deployment; set to False
otherwise. The default value is False
.If you set AutoGenerateEndpointName
to True
, do not specify the EndpointName
; otherwise a 400 error is thrown. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
EndpointName
if and only if you set AutoGenerateEndpointName
to False
; otherwise a 400 error is thrown. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | True |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | True |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
FeatureAttributeNames
(optional) in JSON format as shown below: { "FeatureAttributeNames":["col1", "col2", ...] }
.You can also specify the data type of the feature (optional) in the format shown below:{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.In ensembling mode, Autopilot only supports the following data types: numeric
, categorical
, text
, and datetime
. In HPO mode, Autopilot can support numeric
, categorical
, text
, datetime
, and sequence
.If only FeatureDataTypes
is provided, the column keys (col1
, col2
,..) should be a subset of the column names in the input data. If both FeatureDataTypes
and FeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames
.The key name FeatureAttributeNames
is fixed. The values listed in ["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_FeatureSpecificationS3Uri |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_GenerateCandidateDefinitionsOnly |
AUTO
. In AUTO
mode, Autopilot chooses ENSEMBLING
for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING
for larger ones.The ENSEMBLING
mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING
mode.The HYPERPARAMETER_TUNING
(HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING
mode. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_Mode |
ProblemType
and provide the AutoMLJobObjective metric, or none at all. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_ProblemType |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_SampleWeightAttributeName |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TabularJobConfig_TargetAttributeName |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | Tags |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TextClassificationJobConfig_ContentColumn |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TextClassificationJobConfig_TargetLabelColumn |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_TimeSeriesConfig_GroupingAttributeNames |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_TimeSeriesConfig_ItemIdentifierAttributeName |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_TimeSeriesConfig_TargetAttributeName |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_TimeSeriesConfig_TimestampAttributeName |
TimeSeriesConfig
. When not provided, the AutoML job V2 includes all the columns from the original dataset that are not already declared in TimeSeriesConfig
. If provided, the AutoML job V2 only considers these additional columns as a complement to the ones declared in TimeSeriesConfig
.You can input FeatureAttributeNames
(optional) in JSON format as shown below: { "FeatureAttributeNames":["col1", "col2", ...] }
.You can also specify the data type of the feature (optional) in the format shown below:{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
Autopilot supports the following data types: numeric
, categorical
, text
, and datetime
.These column keys must not include any column set in TimeSeriesConfig
. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_FeatureSpecificationS3Uri |
1D
indicates every day and 15min
indicates every 15 minutes. The value of a frequency must not overlap with the next larger frequency. For example, you must use a frequency of 1H
instead of 60min
.The valid values for each frequency are the following:Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_ForecastFrequency |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_ForecastHorizon |
0.01
(p1) to 0.99
(p99), by increments of 0.01 or higher. Up to five forecast quantiles can be specified. When ForecastQuantiles
is not provided, the AutoML job uses the quantiles p10, p50, and p90 as default. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_ForecastQuantiles |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_HolidayConfig |
sum
(default), avg
, first
, min
, max
.Aggregation is only supported for the target column. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_Transformations_Aggregation |
frontfill
: none
(Supported only for target column)middlefill
: zero
, value
, median
, mean
, min
, max
backfill
: zero
, value
, median
, mean
, min
, max
futurefill
: zero
, value
, median
, mean
, min
, max
"backfill" : "value"
), and define the filling value in an additional parameter prefixed with "_value". For example, to set backfill
to a value of 2
, you must include two parameters: "backfill": "value"
and "backfill_value":"2"
. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AutoMLProblemTypeConfig_TimeSeriesForecastingJobConfig_Transformations_Filling |
Subnets
field. Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | SecurityConfig_VpcConfig_SecurityGroupIds |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | SecurityConfig_VpcConfig_Subnets |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AK |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByValue, ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByValue, ByPropertyName) |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | AWSProfilesLocation, ProfilesLocation |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | StoredCredentials, AWSProfileName |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | RegionToCall |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | SK, SecretAccessKey |
Required? | False |
Position? | Named |
Accept pipeline input? | True (ByPropertyName) |
Aliases | ST |
AWS Tools for PowerShell: 2.x.y.z