Tested Models - Amazon SageMaker

Tested Models

The following collapsible sections provide information about machine learning models that were tested by the Amazon SageMaker Neo team. Expand the collapsible section based on your framework to check if a model was tested.

Note

This is not a comprehensive list of models that can be compiled with Neo.

See Supported Frameworks and SageMaker Neo Supported Operators to find out if you can compile your model with SageMaker Neo.

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

Alexnet

Resnet50

X

X

X

X

X

X

X

YOLOv2

X

X

X

X

X

YOLOv2_tiny

X

X

X

X

X

X

X

YOLOv3_416

X

X

X

X

X

YOLOv3_tiny

X

X

X

X

X

X

X

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

Alexnet

X

Densenet121

X

DenseNet201

X

X

X

X

X

X

X

X

GoogLeNet

X

X

X

X

X

X

X

InceptionV3

X

X

X

X

X

MobileNet0.75

X

X

X

X

X

X

MobileNet1.0

X

X

X

X

X

X

X

MobileNetV2_0.5

X

X

X

X

X

X

MobileNetV2_1.0

X

X

X

X

X

X

X

X

X

MobileNetV3_Large

X

X

X

X

X

X

X

X

X

MobileNetV3_Small

X

X

X

X

X

X

X

X

X

ResNeSt50

X

X

X

X

ResNet18_v1

X

X

X

X

X

X

X

ResNet18_v2

X

X

X

X

X

X

ResNet50_v1

X

X

X

X

X

X

X

X

ResNet50_v2

X

X

X

X

X

X

X

X

ResNext101_32x4d

ResNext50_32x4d

X

X

X

X

X

X

SENet_154

X

X

X

X

X

SE_ResNext50_32x4d

X

X

X

X

X

X

X

SqueezeNet1.0

X

X

X

X

X

X

X

SqueezeNet1.1

X

X

X

X

X

X

X

X

VGG11

X

X

X

X

X

X

X

Xception

X

X

X

X

X

X

X

X

darknet53

X

X

X

X

X

X

X

resnet18_v1b_0.89

X

X

X

X

X

X

resnet50_v1d_0.11

X

X

X

X

X

X

resnet50_v1d_0.86

X

X

X

X

X

X

X

X

ssd_512_mobilenet1.0_coco

X

X

X

X

X

X

X

ssd_512_mobilenet1.0_voc

X

X

X

X

X

X

X

ssd_resnet50_v1

X

X

X

X

X

X

yolo3_darknet53_coco

X

X

X

X

X

yolo3_mobilenet1.0_coco

X

X

X

X

X

X

X

deeplab_resnet50

X

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

densenet121

X

X

X

X

X

X

X

X

densenet201

X

X

X

X

X

X

X

inception_v3

X

X

X

X

X

X

X

mobilenet_v1

X

X

X

X

X

X

X

X

mobilenet_v2

X

X

X

X

X

X

X

X

resnet152_v1

X

X

X

resnet152_v2

X

X

X

resnet50_v1

X

X

X

X

X

X

X

resnet50_v2

X

X

X

X

X

X

X

X

vgg16

X

X

X

X

X

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

alexnet

X

mobilenetv2-1.0

X

X

X

X

X

X

X

X

resnet18v1

X

X

X

X

resnet18v2

X

X

X

X

resnet50v1

X

X

X

X

X

X

resnet50v2

X

X

X

X

X

X

resnet152v1

X

X

X

X

resnet152v2

X

X

X

X

squeezenet1.1

X

X

X

X

X

X

X

vgg19

X

X

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

densenet121

X

X

X

X

X

X

X

inception_v3

X

X

X

X

X

X

resnet152

X

X

X

X

resnet18

X

X

X

X

X

X

resnet50

X

X

X

X

X

X

squeezenet1.0

X

X

X

X

X

X

squeezenet1.1

X

X

X

X

X

X

X

TensorFlow

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

densenet201

X

X

X

X

X

X

X

X

inception_v3

X

X

X

X

X

X

X

X

mobilenet100_v1

X

X

X

X

X

X

X

mobilenet100_v2.0

X

X

X

X

X

X

X

X

mobilenet130_v2

X

X

X

X

X

X

mobilenet140_v2

X

X

X

X

X

X

X

X

resnet50_v1.5

X

X

X

X

X

X

X

resnet50_v2

X

X

X

X

X

X

X

X

squeezenet

X

X

X

X

X

X

X

X

TensorFlow.Keras

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

DenseNet121

X

X

X

X

X

X

X

DenseNet201

X

X

X

X

X

X

InceptionV3

X

X

X

X

X

X

X

MobileNet

X

X

X

X

X

X

X

MobileNetv2

X

X

X

X

X

X

X

NASNetLarge

X

X

X

X

NASNetMobile

X

X

X

X

X

X

X

ResNet101

X

X

X

X

ResNet101V2

X

X

X

X

ResNet152

X

X

X

ResNet152v2

X

X

X

ResNet50

X

X

X

X

X

X

ResNet50V2

X

X

X

X

X

X

X

VGG16

X

X

X

X

Xception

X

X

X

X

X

X

X

TensorFlow-Lite (FP32)

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

densenet_2018_04_27

X

X

X

X

X

inception_resnet_v2_2018_04_27

X

X

X

X

inception_v3_2018_04_27

X

X

X

X

inception_v4_2018_04_27

X

X

X

X

mnasnet_0.5_224_09_07_2018

X

X

X

X

X

mnasnet_1.0_224_09_07_2018

X

X

X

X

X

mnasnet_1.3_224_09_07_2018

X

X

X

X

X

mobilenet_v1_0.25_128

X

X

X

X

X

mobilenet_v1_0.25_224

X

X

X

X

X

mobilenet_v1_0.5_128

X

X

X

X

X

mobilenet_v1_0.5_224

X

X

X

X

X

mobilenet_v1_0.75_128

X

X

X

X

X

mobilenet_v1_0.75_224

X

X

X

X

X

mobilenet_v1_1.0_128

X

X

X

X

X

mobilenet_v1_1.0_192

X

X

X

X

X

mobilenet_v2_1.0_224

X

X

X

X

X

resnet_v2_101

X

X

X

X

squeezenet_2018_04_27

X

X

X

X

X

TensorFlow-Lite (INT8)

Models

ARM V8

ARM Mali

Ambarella CV22

Nvidia

Panorama

TI TDA4VM

Qualcomm QCS603

X86_Linux

X86_Windows

inception_v1

X

inception_v2

X

inception_v3

X

X

X

X

inception_v4_299

X

X

X

X

mobilenet_v1_0.25_128

X

X

X

mobilenet_v1_0.25_224

X

X

X

mobilenet_v1_0.5_128

X

X

X

mobilenet_v1_0.5_224

X

X

X

mobilenet_v1_0.75_128

X

X

X

mobilenet_v1_0.75_224

X

X

X

X

mobilenet_v1_1.0_128

X

X

X

mobilenet_v1_1.0_224

X

X

X

X

mobilenet_v2_1.0_224

X

X

X

X

deeplab-v3_513

X