Class: Aws::ForecastService::Types::EvaluationParameters

Inherits:
Struct
  • Object
show all
Defined in:
gems/aws-sdk-forecastservice/lib/aws-sdk-forecastservice/types.rb

Overview

Note:

When making an API call, you may pass EvaluationParameters data as a hash:

{
  number_of_backtest_windows: 1,
  back_test_window_offset: 1,
}

Parameters that define how to split a dataset into training data and testing data, and the number of iterations to perform. These parameters are specified in the predefined algorithms but you can override them in the CreatePredictor request.

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#back_test_window_offsetInteger

The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

Returns:

  • (Integer)


1920
1921
1922
1923
1924
1925
# File 'gems/aws-sdk-forecastservice/lib/aws-sdk-forecastservice/types.rb', line 1920

class EvaluationParameters < Struct.new(
  :number_of_backtest_windows,
  :back_test_window_offset)
  SENSITIVE = []
  include Aws::Structure
end

#number_of_backtest_windowsInteger

The number of times to split the input data. The default is 1. Valid values are 1 through 5.

Returns:

  • (Integer)


1920
1921
1922
1923
1924
1925
# File 'gems/aws-sdk-forecastservice/lib/aws-sdk-forecastservice/types.rb', line 1920

class EvaluationParameters < Struct.new(
  :number_of_backtest_windows,
  :back_test_window_offset)
  SENSITIVE = []
  include Aws::Structure
end