Class: Aws::MachineLearning::Types::MLModel
- Inherits:
-
Struct
- Object
- Struct
- Aws::MachineLearning::Types::MLModel
- Defined in:
- gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb
Overview
Represents the output of a GetMLModel
operation.
The content consists of the detailed metadata and the current status
of the MLModel
.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#algorithm ⇒ String
The algorithm used to train the
MLModel
. -
#compute_time ⇒ Integer
Long integer type that is a 64-bit signed number.
-
#created_at ⇒ Time
The time that the
MLModel
was created. -
#created_by_iam_user ⇒ String
The AWS user account from which the
MLModel
was created. -
#endpoint_info ⇒ Types::RealtimeEndpointInfo
The current endpoint of the
MLModel
. -
#finished_at ⇒ Time
A timestamp represented in epoch time.
-
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
-
#last_updated_at ⇒ Time
The time of the most recent edit to the
MLModel
. -
#message ⇒ String
A description of the most recent details about accessing the
MLModel
. -
#ml_model_id ⇒ String
The ID assigned to the
MLModel
at creation. -
#ml_model_type ⇒ String
Identifies the
MLModel
category. -
#name ⇒ String
A user-supplied name or description of the
MLModel
. -
#score_threshold ⇒ Float
-
#score_threshold_last_updated_at ⇒ Time
The time of the most recent edit to the
ScoreThreshold
. -
#size_in_bytes ⇒ Integer
Long integer type that is a 64-bit signed number.
-
#started_at ⇒ Time
A timestamp represented in epoch time.
-
#status ⇒ String
The current status of an
MLModel
. -
#training_data_source_id ⇒ String
The ID of the training
DataSource
. -
#training_parameters ⇒ Hash<String,String>
A list of the training parameters in the
MLModel
.
Instance Attribute Details
#algorithm ⇒ String
The algorithm used to train the MLModel
. The following algorithm
is supported:
SGD
-- Stochastic gradient descent. The goal ofSGD
is to minimize the gradient of the loss function.
^
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#compute_time ⇒ Integer
Long integer type that is a 64-bit signed number.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#created_at ⇒ Time
The time that the MLModel
was created. The time is expressed in
epoch time.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#created_by_iam_user ⇒ String
The AWS user account from which the MLModel
was created. The
account type can be either an AWS root account or an AWS Identity
and Access Management (IAM) user account.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#endpoint_info ⇒ Types::RealtimeEndpointInfo
The current endpoint of the MLModel
.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#finished_at ⇒ Time
A timestamp represented in epoch time.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#last_updated_at ⇒ Time
The time of the most recent edit to the MLModel
. The time is
expressed in epoch time.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#message ⇒ String
A description of the most recent details about accessing the
MLModel
.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#ml_model_id ⇒ String
The ID assigned to the MLModel
at creation.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#ml_model_type ⇒ String
Identifies the MLModel
category. The following are the available
types:
REGRESSION
- Produces a numeric result. For example, "What price should a house be listed at?"BINARY
- Produces one of two possible results. For example, "Is this a child-friendly web site?".MULTICLASS
- Produces one of several possible results. For example, "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#name ⇒ String
A user-supplied name or description of the MLModel
.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#score_threshold ⇒ Float
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#score_threshold_last_updated_at ⇒ Time
The time of the most recent edit to the ScoreThreshold
. The time
is expressed in epoch time.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#size_in_bytes ⇒ Integer
Long integer type that is a 64-bit signed number.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#started_at ⇒ Time
A timestamp represented in epoch time.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#status ⇒ String
The current status of an MLModel
. This element can have one of the
following values:
PENDING
- Amazon Machine Learning (Amazon ML) submitted a request to create anMLModel
.INPROGRESS
- The creation process is underway.FAILED
- The request to create anMLModel
didn't run to completion. The model isn't usable.COMPLETED
- The creation process completed successfully.DELETED
- TheMLModel
is marked as deleted. It isn't usable.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#training_data_source_id ⇒ String
The ID of the training DataSource
. The CreateMLModel
operation
uses the TrainingDataSourceId
.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#training_parameters ⇒ Hash<String,String>
A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm, which controls overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm, which controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2595 class MLModel < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :algorithm, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |