You are viewing documentation for version 2 of the AWS SDK for Ruby. Version 3 documentation can be found here.

Class: Aws::SageMaker::Types::TrainingSpecification

Inherits:
Struct
  • Object
show all
Defined in:
(unknown)

Overview

Note:

When passing TrainingSpecification as input to an Aws::Client method, you can use a vanilla Hash:

{
  training_image: "Image", # required
  training_image_digest: "ImageDigest",
  supported_hyper_parameters: [
    {
      name: "ParameterName", # required
      description: "EntityDescription",
      type: "Integer", # required, accepts Integer, Continuous, Categorical, FreeText
      range: {
        integer_parameter_range_specification: {
          min_value: "ParameterValue", # required
          max_value: "ParameterValue", # required
        },
        continuous_parameter_range_specification: {
          min_value: "ParameterValue", # required
          max_value: "ParameterValue", # required
        },
        categorical_parameter_range_specification: {
          values: ["ParameterValue"], # required
        },
      },
      is_tunable: false,
      is_required: false,
      default_value: "ParameterValue",
    },
  ],
  supported_training_instance_types: ["ml.m4.xlarge"], # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
  supports_distributed_training: false,
  metric_definitions: [
    {
      name: "MetricName", # required
      regex: "MetricRegex", # required
    },
  ],
  training_channels: [ # required
    {
      name: "ChannelName", # required
      description: "EntityDescription",
      is_required: false,
      supported_content_types: ["ContentType"], # required
      supported_compression_types: ["None"], # accepts None, Gzip
      supported_input_modes: ["Pipe"], # required, accepts Pipe, File
    },
  ],
  supported_tuning_job_objective_metrics: [
    {
      type: "Maximize", # required, accepts Maximize, Minimize
      metric_name: "MetricName", # required
    },
  ],
}

Defines how the algorithm is used for a training job.

Returned by:

Instance Attribute Summary collapse

Instance Attribute Details

#metric_definitionsArray<Types::MetricDefinition>

A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

Returns:

  • (Array<Types::MetricDefinition>)

    A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

#supported_hyper_parametersArray<Types::HyperParameterSpecification>

A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

Returns:

#supported_training_instance_typesArray<String>

A list of the instance types that this algorithm can use for training.

Returns:

  • (Array<String>)

    A list of the instance types that this algorithm can use for training.

#supported_tuning_job_objective_metricsArray<Types::HyperParameterTuningJobObjective>

A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

Returns:

#supports_distributed_trainingBoolean

Indicates whether the algorithm supports distributed training. If set to false, buyers can’t request more than one instance during training.

Returns:

  • (Boolean)

    Indicates whether the algorithm supports distributed training.

#training_channelsArray<Types::ChannelSpecification>

A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

Returns:

  • (Array<Types::ChannelSpecification>)

    A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

#training_imageString

The Amazon ECR registry path of the Docker image that contains the training algorithm.

Returns:

  • (String)

    The Amazon ECR registry path of the Docker image that contains the training algorithm.

#training_image_digestString

An MD5 hash of the training algorithm that identifies the Docker image used for training.

Returns:

  • (String)

    An MD5 hash of the training algorithm that identifies the Docker image used for training.