选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

MLPER-05: Optimize training and inference instance types - Machine Learning Lens
此页面尚未翻译为您的语言。 请求翻译

MLPER-05: Optimize training and inference instance types

Determine how the model type and data velocity affect the choice of training and inference instance types. Identify the right instance type that supports memory intensive training, or compute intensive training with high throughput and low latency real-time inference. The speed of model inferences is directly impacted by model complexity. Selection of high compute instances can accelerate inference speed. GPUs are often the preferred processor type to train many deep learning models. CPUs are often sufficient for the inference workloads.

Implementation plan

  • Experiment with alternative instance types to train and deploy - Determine which instance types are most appropriate for your ML algorithm and use case. Use multiple instances for training for large datasets to take advantage of scale.

Documents

Blogs

Videos

Examples

隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。