选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

Read Performance Considerations - Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL
此页面尚未翻译为您的语言。 请求翻译

Read Performance Considerations

With Amazon S3 storage mode enabled, Apache HBase region servers use MemStore to store data writes in-memory, and use write-ahead logs to store data writes in HDFS before the data is written to HBase StoreFiles in Amazon S3. Reading records directly from the StoreFile in Amazon S3 results in significantly higher latency and higher standard deviation than reading from HDFS.

Amazon S3 scales to support very high request rates. If your request rate grows steadily, Amazon S3 automatically partitions your buckets as needed to support higher request rates. However, the maximum request rates for Amazon S3 are lower than what can be achieved from the local cache. For more information about Amazon S3 performance, see Performance Optimization.

For read-heavy workloads caching data in-memory or on-disk caches in Amazon EC2 instance storage is recommended. Because Apache HBase region servers use BlockCache to store data reads in memory and BucketCache to store data reads on EC2 instance storage, you can choose an EC2 instance type with sufficient instance store.

In addition, you can add Amazon Elastic Block Store (Amazon EBS) storage to accommodate your required cache size. You can increase the BucketCache size on attached instance stores and EBS volumes using the hbase.bucketcache.size property.

隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。