文件範例儲存庫中有更多 AWS SDK可用的AWS SDK範例
本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
使用 Amazon Comprehend 和 偵測文件元素 AWS SDK
以下程式碼範例顯示做法:
偵測文件中的語言、實體和金鑰片語。
偵測文件中的個人識別資訊 (PII)。
偵測文件的情緒。
偵測文件中的語法元素。
- Python
-
- SDK for Python (Boto3)
-
注意
還有更多功能 GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 建立包裝 Amazon Comprehend 動作的類別。
import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_languages(self, text): """ Detects languages used in a document. :param text: The document to inspect. :return: The list of languages along with their confidence scores. """ try: response = self.comprehend_client.detect_dominant_language(Text=text) languages = response["Languages"] logger.info("Detected %s languages.", len(languages)) except ClientError: logger.exception("Couldn't detect languages.") raise else: return languages def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities def detect_key_phrases(self, text, language_code): """ Detects key phrases in a document. A key phrase is typically a noun and its modifiers. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of key phrases along with their confidence scores. """ try: response = self.comprehend_client.detect_key_phrases( Text=text, LanguageCode=language_code ) phrases = response["KeyPhrases"] logger.info("Detected %s phrases.", len(phrases)) except ClientError: logger.exception("Couldn't detect phrases.") raise else: return phrases def detect_pii(self, text, language_code): """ Detects personally identifiable information (PII) in a document. PII can be things like names, account numbers, or addresses. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of PII entities along with their confidence scores. """ try: response = self.comprehend_client.detect_pii_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s PII entities.", len(entities)) except ClientError: logger.exception("Couldn't detect PII entities.") raise else: return entities def detect_sentiment(self, text, language_code): """ Detects the overall sentiment expressed in a document. Sentiment can be positive, negative, neutral, or a mixture. :param text: The document to inspect. :param language_code: The language of the document. :return: The sentiments along with their confidence scores. """ try: response = self.comprehend_client.detect_sentiment( Text=text, LanguageCode=language_code ) logger.info("Detected primary sentiment %s.", response["Sentiment"]) except ClientError: logger.exception("Couldn't detect sentiment.") raise else: return response def detect_syntax(self, text, language_code): """ Detects syntactical elements of a document. Syntax tokens are portions of text along with their use as parts of speech, such as nouns, verbs, and interjections. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of syntax tokens along with their confidence scores. """ try: response = self.comprehend_client.detect_syntax( Text=text, LanguageCode=language_code ) tokens = response["SyntaxTokens"] logger.info("Detected %s syntax tokens.", len(tokens)) except ClientError: logger.exception("Couldn't detect syntax.") raise else: return tokens
在包裝函式類別上呼叫 函數,以偵測文件中的實體、片語等。
def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend detection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") comp_detect = ComprehendDetect(boto3.client("comprehend")) with open("detect_sample.txt") as sample_file: sample_text = sample_file.read() demo_size = 3 print("Sample text used for this demo:") print("-" * 88) print(sample_text) print("-" * 88) print("Detecting languages.") languages = comp_detect.detect_languages(sample_text) pprint(languages) lang_code = languages[0]["LanguageCode"] print("Detecting entities.") entities = comp_detect.detect_entities(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(entities[:demo_size]) print("Detecting key phrases.") phrases = comp_detect.detect_key_phrases(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(phrases[:demo_size]) print("Detecting personally identifiable information (PII).") pii_entities = comp_detect.detect_pii(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(pii_entities[:demo_size]) print("Detecting sentiment.") sentiment = comp_detect.detect_sentiment(sample_text, lang_code) print(f"Sentiment: {sentiment['Sentiment']}") print("SentimentScore:") pprint(sentiment["SentimentScore"]) print("Detecting syntax elements.") syntax_tokens = comp_detect.detect_syntax(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(syntax_tokens[:demo_size]) print("Thanks for watching!") print("-" * 88)
-
如需API詳細資訊,請參閱《 AWS SDK for Python (Boto3) API參考》中的下列主題。
-
建立應用程式以分析客戶意見回饋
偵測從影像擷取的文字中的實體