選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

Schema Design - Comparing the Use of Amazon DynamoDB and Apache HBase for NoSQL
此頁面尚未翻譯為您的語言。 請求翻譯

Schema Design

A region can run hot when dealing with a write pattern that does not distribute the load across all servers evenly. This is a common scenario when dealing with streams processing events with time series data. The gradually increasing nature of time series data can cause all incoming data to be written to the same region.

This concentrated write activity on a single server can slow down the overall performance of the cluster. This is because inserting data is now bound to the performance of a single machine. This problem is easily overcome by employing key design strategies such as the following.

  • Applying salting prefixes to keys; in other words, prepending a random number to a row.

  • Randomizing the key with a hash function.

  • Promoting another field to prefix the row key.

These techniques can achieve a more evenly distributed load across all servers.

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。