@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class StartMLModelTransformJobRequest extends AmazonWebServiceRequest implements Serializable, Cloneable
NOOP
Constructor and Description |
---|
StartMLModelTransformJobRequest() |
Modifier and Type | Method and Description |
---|---|
StartMLModelTransformJobRequest |
clone()
Creates a shallow clone of this object for all fields except the handler context.
|
boolean |
equals(Object obj) |
String |
getBaseProcessingInstanceType()
The type of ML instance used in preparing and managing training of ML models.
|
Integer |
getBaseProcessingInstanceVolumeSizeInGB()
The disk volume size of the training instance in gigabytes.
|
CustomModelTransformParameters |
getCustomModelTransformParameters()
Configuration information for a model transform using a custom model.
|
String |
getDataProcessingJobId()
The job ID of a completed data-processing job.
|
String |
getId()
A unique identifier for the new job.
|
String |
getMlModelTrainingJobId()
The job ID of a completed model-training job.
|
String |
getModelTransformOutputS3Location()
The location in Amazon S3 where the model artifacts are to be stored.
|
String |
getNeptuneIamRoleArn()
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources.
|
String |
getS3OutputEncryptionKMSKey()
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job.
|
String |
getSagemakerIamRoleArn()
The ARN of an IAM role for SageMaker execution.
|
List<String> |
getSecurityGroupIds()
The VPC security group IDs.
|
List<String> |
getSubnets()
The IDs of the subnets in the Neptune VPC.
|
String |
getTrainingJobName()
The name of a completed SageMaker training job.
|
String |
getVolumeEncryptionKMSKey()
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to
the ML compute instances that run the training job.
|
int |
hashCode() |
void |
setBaseProcessingInstanceType(String baseProcessingInstanceType)
The type of ML instance used in preparing and managing training of ML models.
|
void |
setBaseProcessingInstanceVolumeSizeInGB(Integer baseProcessingInstanceVolumeSizeInGB)
The disk volume size of the training instance in gigabytes.
|
void |
setCustomModelTransformParameters(CustomModelTransformParameters customModelTransformParameters)
Configuration information for a model transform using a custom model.
|
void |
setDataProcessingJobId(String dataProcessingJobId)
The job ID of a completed data-processing job.
|
void |
setId(String id)
A unique identifier for the new job.
|
void |
setMlModelTrainingJobId(String mlModelTrainingJobId)
The job ID of a completed model-training job.
|
void |
setModelTransformOutputS3Location(String modelTransformOutputS3Location)
The location in Amazon S3 where the model artifacts are to be stored.
|
void |
setNeptuneIamRoleArn(String neptuneIamRoleArn)
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources.
|
void |
setS3OutputEncryptionKMSKey(String s3OutputEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job.
|
void |
setSagemakerIamRoleArn(String sagemakerIamRoleArn)
The ARN of an IAM role for SageMaker execution.
|
void |
setSecurityGroupIds(Collection<String> securityGroupIds)
The VPC security group IDs.
|
void |
setSubnets(Collection<String> subnets)
The IDs of the subnets in the Neptune VPC.
|
void |
setTrainingJobName(String trainingJobName)
The name of a completed SageMaker training job.
|
void |
setVolumeEncryptionKMSKey(String volumeEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to
the ML compute instances that run the training job.
|
String |
toString()
Returns a string representation of this object.
|
StartMLModelTransformJobRequest |
withBaseProcessingInstanceType(String baseProcessingInstanceType)
The type of ML instance used in preparing and managing training of ML models.
|
StartMLModelTransformJobRequest |
withBaseProcessingInstanceVolumeSizeInGB(Integer baseProcessingInstanceVolumeSizeInGB)
The disk volume size of the training instance in gigabytes.
|
StartMLModelTransformJobRequest |
withCustomModelTransformParameters(CustomModelTransformParameters customModelTransformParameters)
Configuration information for a model transform using a custom model.
|
StartMLModelTransformJobRequest |
withDataProcessingJobId(String dataProcessingJobId)
The job ID of a completed data-processing job.
|
StartMLModelTransformJobRequest |
withId(String id)
A unique identifier for the new job.
|
StartMLModelTransformJobRequest |
withMlModelTrainingJobId(String mlModelTrainingJobId)
The job ID of a completed model-training job.
|
StartMLModelTransformJobRequest |
withModelTransformOutputS3Location(String modelTransformOutputS3Location)
The location in Amazon S3 where the model artifacts are to be stored.
|
StartMLModelTransformJobRequest |
withNeptuneIamRoleArn(String neptuneIamRoleArn)
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources.
|
StartMLModelTransformJobRequest |
withS3OutputEncryptionKMSKey(String s3OutputEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job.
|
StartMLModelTransformJobRequest |
withSagemakerIamRoleArn(String sagemakerIamRoleArn)
The ARN of an IAM role for SageMaker execution.
|
StartMLModelTransformJobRequest |
withSecurityGroupIds(Collection<String> securityGroupIds)
The VPC security group IDs.
|
StartMLModelTransformJobRequest |
withSecurityGroupIds(String... securityGroupIds)
The VPC security group IDs.
|
StartMLModelTransformJobRequest |
withSubnets(Collection<String> subnets)
The IDs of the subnets in the Neptune VPC.
|
StartMLModelTransformJobRequest |
withSubnets(String... subnets)
The IDs of the subnets in the Neptune VPC.
|
StartMLModelTransformJobRequest |
withTrainingJobName(String trainingJobName)
The name of a completed SageMaker training job.
|
StartMLModelTransformJobRequest |
withVolumeEncryptionKMSKey(String volumeEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to
the ML compute instances that run the training job.
|
addHandlerContext, getCloneRoot, getCloneSource, getCustomQueryParameters, getCustomRequestHeaders, getGeneralProgressListener, getHandlerContext, getReadLimit, getRequestClientOptions, getRequestCredentials, getRequestCredentialsProvider, getRequestMetricCollector, getSdkClientExecutionTimeout, getSdkRequestTimeout, putCustomQueryParameter, putCustomRequestHeader, setGeneralProgressListener, setRequestCredentials, setRequestCredentialsProvider, setRequestMetricCollector, setSdkClientExecutionTimeout, setSdkRequestTimeout, withGeneralProgressListener, withRequestCredentialsProvider, withRequestMetricCollector, withSdkClientExecutionTimeout, withSdkRequestTimeout
public void setId(String id)
A unique identifier for the new job. The default is an autogenerated UUID.
id
- A unique identifier for the new job. The default is an autogenerated UUID.public String getId()
A unique identifier for the new job. The default is an autogenerated UUID.
public StartMLModelTransformJobRequest withId(String id)
A unique identifier for the new job. The default is an autogenerated UUID.
id
- A unique identifier for the new job. The default is an autogenerated UUID.public void setDataProcessingJobId(String dataProcessingJobId)
The job ID of a completed data-processing job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
dataProcessingJobId
- The job ID of a completed data-processing job. You must include either dataProcessingJobId
and a mlModelTrainingJobId
, or a trainingJobName
.public String getDataProcessingJobId()
The job ID of a completed data-processing job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
dataProcessingJobId
and a mlModelTrainingJobId
, or a trainingJobName
.public StartMLModelTransformJobRequest withDataProcessingJobId(String dataProcessingJobId)
The job ID of a completed data-processing job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
dataProcessingJobId
- The job ID of a completed data-processing job. You must include either dataProcessingJobId
and a mlModelTrainingJobId
, or a trainingJobName
.public void setMlModelTrainingJobId(String mlModelTrainingJobId)
The job ID of a completed model-training job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
mlModelTrainingJobId
- The job ID of a completed model-training job. You must include either dataProcessingJobId
and
a mlModelTrainingJobId
, or a trainingJobName
.public String getMlModelTrainingJobId()
The job ID of a completed model-training job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
dataProcessingJobId
and a mlModelTrainingJobId
, or a trainingJobName
.public StartMLModelTransformJobRequest withMlModelTrainingJobId(String mlModelTrainingJobId)
The job ID of a completed model-training job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
mlModelTrainingJobId
- The job ID of a completed model-training job. You must include either dataProcessingJobId
and
a mlModelTrainingJobId
, or a trainingJobName
.public void setTrainingJobName(String trainingJobName)
The name of a completed SageMaker training job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
trainingJobName
- The name of a completed SageMaker training job. You must include either dataProcessingJobId
and a mlModelTrainingJobId
, or a trainingJobName
.public String getTrainingJobName()
The name of a completed SageMaker training job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
dataProcessingJobId
and a mlModelTrainingJobId
, or a trainingJobName
.public StartMLModelTransformJobRequest withTrainingJobName(String trainingJobName)
The name of a completed SageMaker training job. You must include either dataProcessingJobId
and a
mlModelTrainingJobId
, or a trainingJobName
.
trainingJobName
- The name of a completed SageMaker training job. You must include either dataProcessingJobId
and a mlModelTrainingJobId
, or a trainingJobName
.public void setModelTransformOutputS3Location(String modelTransformOutputS3Location)
The location in Amazon S3 where the model artifacts are to be stored.
modelTransformOutputS3Location
- The location in Amazon S3 where the model artifacts are to be stored.public String getModelTransformOutputS3Location()
The location in Amazon S3 where the model artifacts are to be stored.
public StartMLModelTransformJobRequest withModelTransformOutputS3Location(String modelTransformOutputS3Location)
The location in Amazon S3 where the model artifacts are to be stored.
modelTransformOutputS3Location
- The location in Amazon S3 where the model artifacts are to be stored.public void setSagemakerIamRoleArn(String sagemakerIamRoleArn)
The ARN of an IAM role for SageMaker execution. This must be listed in your DB cluster parameter group or an error will occur.
sagemakerIamRoleArn
- The ARN of an IAM role for SageMaker execution. This must be listed in your DB cluster parameter group or
an error will occur.public String getSagemakerIamRoleArn()
The ARN of an IAM role for SageMaker execution. This must be listed in your DB cluster parameter group or an error will occur.
public StartMLModelTransformJobRequest withSagemakerIamRoleArn(String sagemakerIamRoleArn)
The ARN of an IAM role for SageMaker execution. This must be listed in your DB cluster parameter group or an error will occur.
sagemakerIamRoleArn
- The ARN of an IAM role for SageMaker execution. This must be listed in your DB cluster parameter group or
an error will occur.public void setNeptuneIamRoleArn(String neptuneIamRoleArn)
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in your DB cluster parameter group or an error will occur.
neptuneIamRoleArn
- The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be
listed in your DB cluster parameter group or an error will occur.public String getNeptuneIamRoleArn()
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in your DB cluster parameter group or an error will occur.
public StartMLModelTransformJobRequest withNeptuneIamRoleArn(String neptuneIamRoleArn)
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in your DB cluster parameter group or an error will occur.
neptuneIamRoleArn
- The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be
listed in your DB cluster parameter group or an error will occur.public void setCustomModelTransformParameters(CustomModelTransformParameters customModelTransformParameters)
Configuration information for a model transform using a custom model. The
customModelTransformParameters
object contains the following fields, which must have values
compatible with the saved model parameters from the training job:
customModelTransformParameters
- Configuration information for a model transform using a custom model. The
customModelTransformParameters
object contains the following fields, which must have values
compatible with the saved model parameters from the training job:public CustomModelTransformParameters getCustomModelTransformParameters()
Configuration information for a model transform using a custom model. The
customModelTransformParameters
object contains the following fields, which must have values
compatible with the saved model parameters from the training job:
customModelTransformParameters
object contains the following fields, which must have values
compatible with the saved model parameters from the training job:public StartMLModelTransformJobRequest withCustomModelTransformParameters(CustomModelTransformParameters customModelTransformParameters)
Configuration information for a model transform using a custom model. The
customModelTransformParameters
object contains the following fields, which must have values
compatible with the saved model parameters from the training job:
customModelTransformParameters
- Configuration information for a model transform using a custom model. The
customModelTransformParameters
object contains the following fields, which must have values
compatible with the saved model parameters from the training job:public void setBaseProcessingInstanceType(String baseProcessingInstanceType)
The type of ML instance used in preparing and managing training of ML models. This is an ML compute instance chosen based on memory requirements for processing the training data and model.
baseProcessingInstanceType
- The type of ML instance used in preparing and managing training of ML models. This is an ML compute
instance chosen based on memory requirements for processing the training data and model.public String getBaseProcessingInstanceType()
The type of ML instance used in preparing and managing training of ML models. This is an ML compute instance chosen based on memory requirements for processing the training data and model.
public StartMLModelTransformJobRequest withBaseProcessingInstanceType(String baseProcessingInstanceType)
The type of ML instance used in preparing and managing training of ML models. This is an ML compute instance chosen based on memory requirements for processing the training data and model.
baseProcessingInstanceType
- The type of ML instance used in preparing and managing training of ML models. This is an ML compute
instance chosen based on memory requirements for processing the training data and model.public void setBaseProcessingInstanceVolumeSizeInGB(Integer baseProcessingInstanceVolumeSizeInGB)
The disk volume size of the training instance in gigabytes. The default is 0. Both input data and the output model are stored on disk, so the volume size must be large enough to hold both data sets. If not specified or 0, Neptune ML selects a disk volume size based on the recommendation generated in the data processing step.
baseProcessingInstanceVolumeSizeInGB
- The disk volume size of the training instance in gigabytes. The default is 0. Both input data and the
output model are stored on disk, so the volume size must be large enough to hold both data sets. If not
specified or 0, Neptune ML selects a disk volume size based on the recommendation generated in the data
processing step.public Integer getBaseProcessingInstanceVolumeSizeInGB()
The disk volume size of the training instance in gigabytes. The default is 0. Both input data and the output model are stored on disk, so the volume size must be large enough to hold both data sets. If not specified or 0, Neptune ML selects a disk volume size based on the recommendation generated in the data processing step.
public StartMLModelTransformJobRequest withBaseProcessingInstanceVolumeSizeInGB(Integer baseProcessingInstanceVolumeSizeInGB)
The disk volume size of the training instance in gigabytes. The default is 0. Both input data and the output model are stored on disk, so the volume size must be large enough to hold both data sets. If not specified or 0, Neptune ML selects a disk volume size based on the recommendation generated in the data processing step.
baseProcessingInstanceVolumeSizeInGB
- The disk volume size of the training instance in gigabytes. The default is 0. Both input data and the
output model are stored on disk, so the volume size must be large enough to hold both data sets. If not
specified or 0, Neptune ML selects a disk volume size based on the recommendation generated in the data
processing step.public List<String> getSubnets()
The IDs of the subnets in the Neptune VPC. The default is None.
public void setSubnets(Collection<String> subnets)
The IDs of the subnets in the Neptune VPC. The default is None.
subnets
- The IDs of the subnets in the Neptune VPC. The default is None.public StartMLModelTransformJobRequest withSubnets(String... subnets)
The IDs of the subnets in the Neptune VPC. The default is None.
NOTE: This method appends the values to the existing list (if any). Use
setSubnets(java.util.Collection)
or withSubnets(java.util.Collection)
if you want to override
the existing values.
subnets
- The IDs of the subnets in the Neptune VPC. The default is None.public StartMLModelTransformJobRequest withSubnets(Collection<String> subnets)
The IDs of the subnets in the Neptune VPC. The default is None.
subnets
- The IDs of the subnets in the Neptune VPC. The default is None.public List<String> getSecurityGroupIds()
The VPC security group IDs. The default is None.
public void setSecurityGroupIds(Collection<String> securityGroupIds)
The VPC security group IDs. The default is None.
securityGroupIds
- The VPC security group IDs. The default is None.public StartMLModelTransformJobRequest withSecurityGroupIds(String... securityGroupIds)
The VPC security group IDs. The default is None.
NOTE: This method appends the values to the existing list (if any). Use
setSecurityGroupIds(java.util.Collection)
or withSecurityGroupIds(java.util.Collection)
if you
want to override the existing values.
securityGroupIds
- The VPC security group IDs. The default is None.public StartMLModelTransformJobRequest withSecurityGroupIds(Collection<String> securityGroupIds)
The VPC security group IDs. The default is None.
securityGroupIds
- The VPC security group IDs. The default is None.public void setVolumeEncryptionKMSKey(String volumeEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instances that run the training job. The default is None.
volumeEncryptionKMSKey
- The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume
attached to the ML compute instances that run the training job. The default is None.public String getVolumeEncryptionKMSKey()
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instances that run the training job. The default is None.
public StartMLModelTransformJobRequest withVolumeEncryptionKMSKey(String volumeEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instances that run the training job. The default is None.
volumeEncryptionKMSKey
- The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume
attached to the ML compute instances that run the training job. The default is None.public void setS3OutputEncryptionKMSKey(String s3OutputEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The default is none.
s3OutputEncryptionKMSKey
- The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing
job. The default is none.public String getS3OutputEncryptionKMSKey()
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The default is none.
public StartMLModelTransformJobRequest withS3OutputEncryptionKMSKey(String s3OutputEncryptionKMSKey)
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The default is none.
s3OutputEncryptionKMSKey
- The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing
job. The default is none.public String toString()
toString
in class Object
Object.toString()
public StartMLModelTransformJobRequest clone()
AmazonWebServiceRequest
clone
in class AmazonWebServiceRequest
Object.clone()