Use DetectEntities with an AWS SDK or CLI - Amazon Comprehend

Use DetectEntities with an AWS SDK or CLI

The following code examples show how to use DetectEntities.

Action examples are code excerpts from larger programs and must be run in context. You can see this action in context in the following code example:

.NET
AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the AmazonComprehend service detect any /// entities in submitted text. /// </summary> public static class DetectEntities { /// <summary> /// The main method calls the DetectEntitiesAsync method to find any /// entities in the sample code. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); Console.WriteLine("Calling DetectEntities\n"); var detectEntitiesRequest = new DetectEntitiesRequest() { Text = text, LanguageCode = "en", }; var detectEntitiesResponse = await comprehendClient.DetectEntitiesAsync(detectEntitiesRequest); foreach (var e in detectEntitiesResponse.Entities) { Console.WriteLine($"Text: {e.Text}, Type: {e.Type}, Score: {e.Score}, BeginOffset: {e.BeginOffset}, EndOffset: {e.EndOffset}"); } Console.WriteLine("Done"); } }
  • For API details, see DetectEntities in AWS SDK for .NET API Reference.

CLI
AWS CLI

To detect named entities in input text

The following detect-entities example analyzes the input text and returns the named entities. The pre-trained model's confidence score is also output for each prediction.

aws comprehend detect-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }

For more information, see Entities in the Amazon Comprehend Developer Guide.

Java
SDK for Java 2.x
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.comprehend.ComprehendClient; import software.amazon.awssdk.services.comprehend.model.DetectEntitiesRequest; import software.amazon.awssdk.services.comprehend.model.DetectEntitiesResponse; import software.amazon.awssdk.services.comprehend.model.Entity; import software.amazon.awssdk.services.comprehend.model.ComprehendException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectEntities { public static void main(String[] args) { String text = "Amazon.com, Inc. is located in Seattle, WA and was founded July 5th, 1994 by Jeff Bezos, allowing customers to buy everything from books to blenders. Seattle is north of Portland and south of Vancouver, BC. Other notable Seattle - based companies are Starbucks and Boeing."; Region region = Region.US_EAST_1; ComprehendClient comClient = ComprehendClient.builder() .region(region) .build(); System.out.println("Calling DetectEntities"); detectAllEntities(comClient, text); comClient.close(); } public static void detectAllEntities(ComprehendClient comClient, String text) { try { DetectEntitiesRequest detectEntitiesRequest = DetectEntitiesRequest.builder() .text(text) .languageCode("en") .build(); DetectEntitiesResponse detectEntitiesResult = comClient.detectEntities(detectEntitiesRequest); List<Entity> entList = detectEntitiesResult.entities(); for (Entity entity : entList) { System.out.println("Entity text is " + entity.text()); } } catch (ComprehendException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } } }
  • For API details, see DetectEntities in AWS SDK for Java 2.x API Reference.

Python
SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities
  • For API details, see DetectEntities in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Comprehend with an AWS SDK. This topic also includes information about getting started and details about previous SDK versions.