@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class AbstractAmazonEMRContainersAsync extends AbstractAmazonEMRContainers implements AmazonEMRContainersAsync
AmazonEMRContainersAsync
. Convenient method forms pass through to the
corresponding overload that takes a request object and an AsyncHandler
, which throws an
UnsupportedOperationException
.ENDPOINT_PREFIX
cancelJobRun, createJobTemplate, createManagedEndpoint, createSecurityConfiguration, createVirtualCluster, deleteJobTemplate, deleteManagedEndpoint, deleteVirtualCluster, describeJobRun, describeJobTemplate, describeManagedEndpoint, describeSecurityConfiguration, describeVirtualCluster, getCachedResponseMetadata, getManagedEndpointSessionCredentials, listJobRuns, listJobTemplates, listManagedEndpoints, listSecurityConfigurations, listTagsForResource, listVirtualClusters, shutdown, startJobRun, tagResource, untagResource
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
cancelJobRun, createJobTemplate, createManagedEndpoint, createSecurityConfiguration, createVirtualCluster, deleteJobTemplate, deleteManagedEndpoint, deleteVirtualCluster, describeJobRun, describeJobTemplate, describeManagedEndpoint, describeSecurityConfiguration, describeVirtualCluster, getCachedResponseMetadata, getManagedEndpointSessionCredentials, listJobRuns, listJobTemplates, listManagedEndpoints, listSecurityConfigurations, listTagsForResource, listVirtualClusters, shutdown, startJobRun, tagResource, untagResource
public Future<CancelJobRunResult> cancelJobRunAsync(CancelJobRunRequest request)
AmazonEMRContainersAsync
Cancels a job run. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
cancelJobRunAsync
in interface AmazonEMRContainersAsync
public Future<CancelJobRunResult> cancelJobRunAsync(CancelJobRunRequest request, AsyncHandler<CancelJobRunRequest,CancelJobRunResult> asyncHandler)
AmazonEMRContainersAsync
Cancels a job run. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
cancelJobRunAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateJobTemplateResult> createJobTemplateAsync(CreateJobTemplateRequest request)
AmazonEMRContainersAsync
Creates a job template. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
createJobTemplateAsync
in interface AmazonEMRContainersAsync
public Future<CreateJobTemplateResult> createJobTemplateAsync(CreateJobTemplateRequest request, AsyncHandler<CreateJobTemplateRequest,CreateJobTemplateResult> asyncHandler)
AmazonEMRContainersAsync
Creates a job template. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
createJobTemplateAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateManagedEndpointResult> createManagedEndpointAsync(CreateManagedEndpointRequest request)
AmazonEMRContainersAsync
Creates a managed endpoint. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
createManagedEndpointAsync
in interface AmazonEMRContainersAsync
public Future<CreateManagedEndpointResult> createManagedEndpointAsync(CreateManagedEndpointRequest request, AsyncHandler<CreateManagedEndpointRequest,CreateManagedEndpointResult> asyncHandler)
AmazonEMRContainersAsync
Creates a managed endpoint. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
createManagedEndpointAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateSecurityConfigurationResult> createSecurityConfigurationAsync(CreateSecurityConfigurationRequest request)
AmazonEMRContainersAsync
Creates a security configuration. Security configurations in Amazon EMR on EKS are templates for different security setups. You can use security configurations to configure the Lake Formation integration setup. You can also create a security configuration to re-use a security setup each time you create a virtual cluster.
createSecurityConfigurationAsync
in interface AmazonEMRContainersAsync
public Future<CreateSecurityConfigurationResult> createSecurityConfigurationAsync(CreateSecurityConfigurationRequest request, AsyncHandler<CreateSecurityConfigurationRequest,CreateSecurityConfigurationResult> asyncHandler)
AmazonEMRContainersAsync
Creates a security configuration. Security configurations in Amazon EMR on EKS are templates for different security setups. You can use security configurations to configure the Lake Formation integration setup. You can also create a security configuration to re-use a security setup each time you create a virtual cluster.
createSecurityConfigurationAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateVirtualClusterResult> createVirtualClusterAsync(CreateVirtualClusterRequest request)
AmazonEMRContainersAsync
Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
createVirtualClusterAsync
in interface AmazonEMRContainersAsync
public Future<CreateVirtualClusterResult> createVirtualClusterAsync(CreateVirtualClusterRequest request, AsyncHandler<CreateVirtualClusterRequest,CreateVirtualClusterResult> asyncHandler)
AmazonEMRContainersAsync
Creates a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
createVirtualClusterAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteJobTemplateResult> deleteJobTemplateAsync(DeleteJobTemplateRequest request)
AmazonEMRContainersAsync
Deletes a job template. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
deleteJobTemplateAsync
in interface AmazonEMRContainersAsync
public Future<DeleteJobTemplateResult> deleteJobTemplateAsync(DeleteJobTemplateRequest request, AsyncHandler<DeleteJobTemplateRequest,DeleteJobTemplateResult> asyncHandler)
AmazonEMRContainersAsync
Deletes a job template. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
deleteJobTemplateAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteManagedEndpointResult> deleteManagedEndpointAsync(DeleteManagedEndpointRequest request)
AmazonEMRContainersAsync
Deletes a managed endpoint. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
deleteManagedEndpointAsync
in interface AmazonEMRContainersAsync
public Future<DeleteManagedEndpointResult> deleteManagedEndpointAsync(DeleteManagedEndpointRequest request, AsyncHandler<DeleteManagedEndpointRequest,DeleteManagedEndpointResult> asyncHandler)
AmazonEMRContainersAsync
Deletes a managed endpoint. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
deleteManagedEndpointAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteVirtualClusterResult> deleteVirtualClusterAsync(DeleteVirtualClusterRequest request)
AmazonEMRContainersAsync
Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
deleteVirtualClusterAsync
in interface AmazonEMRContainersAsync
public Future<DeleteVirtualClusterResult> deleteVirtualClusterAsync(DeleteVirtualClusterRequest request, AsyncHandler<DeleteVirtualClusterRequest,DeleteVirtualClusterResult> asyncHandler)
AmazonEMRContainersAsync
Deletes a virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
deleteVirtualClusterAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeJobRunResult> describeJobRunAsync(DescribeJobRunRequest request)
AmazonEMRContainersAsync
Displays detailed information about a job run. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
describeJobRunAsync
in interface AmazonEMRContainersAsync
public Future<DescribeJobRunResult> describeJobRunAsync(DescribeJobRunRequest request, AsyncHandler<DescribeJobRunRequest,DescribeJobRunResult> asyncHandler)
AmazonEMRContainersAsync
Displays detailed information about a job run. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
describeJobRunAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeJobTemplateResult> describeJobTemplateAsync(DescribeJobTemplateRequest request)
AmazonEMRContainersAsync
Displays detailed information about a specified job template. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
describeJobTemplateAsync
in interface AmazonEMRContainersAsync
public Future<DescribeJobTemplateResult> describeJobTemplateAsync(DescribeJobTemplateRequest request, AsyncHandler<DescribeJobTemplateRequest,DescribeJobTemplateResult> asyncHandler)
AmazonEMRContainersAsync
Displays detailed information about a specified job template. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
describeJobTemplateAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeManagedEndpointResult> describeManagedEndpointAsync(DescribeManagedEndpointRequest request)
AmazonEMRContainersAsync
Displays detailed information about a managed endpoint. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
describeManagedEndpointAsync
in interface AmazonEMRContainersAsync
public Future<DescribeManagedEndpointResult> describeManagedEndpointAsync(DescribeManagedEndpointRequest request, AsyncHandler<DescribeManagedEndpointRequest,DescribeManagedEndpointResult> asyncHandler)
AmazonEMRContainersAsync
Displays detailed information about a managed endpoint. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
describeManagedEndpointAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeSecurityConfigurationResult> describeSecurityConfigurationAsync(DescribeSecurityConfigurationRequest request)
AmazonEMRContainersAsync
Displays detailed information about a specified security configuration. Security configurations in Amazon EMR on EKS are templates for different security setups. You can use security configurations to configure the Lake Formation integration setup. You can also create a security configuration to re-use a security setup each time you create a virtual cluster.
describeSecurityConfigurationAsync
in interface AmazonEMRContainersAsync
public Future<DescribeSecurityConfigurationResult> describeSecurityConfigurationAsync(DescribeSecurityConfigurationRequest request, AsyncHandler<DescribeSecurityConfigurationRequest,DescribeSecurityConfigurationResult> asyncHandler)
AmazonEMRContainersAsync
Displays detailed information about a specified security configuration. Security configurations in Amazon EMR on EKS are templates for different security setups. You can use security configurations to configure the Lake Formation integration setup. You can also create a security configuration to re-use a security setup each time you create a virtual cluster.
describeSecurityConfigurationAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeVirtualClusterResult> describeVirtualClusterAsync(DescribeVirtualClusterRequest request)
AmazonEMRContainersAsync
Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
describeVirtualClusterAsync
in interface AmazonEMRContainersAsync
public Future<DescribeVirtualClusterResult> describeVirtualClusterAsync(DescribeVirtualClusterRequest request, AsyncHandler<DescribeVirtualClusterRequest,DescribeVirtualClusterResult> asyncHandler)
AmazonEMRContainersAsync
Displays detailed information about a specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
describeVirtualClusterAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<GetManagedEndpointSessionCredentialsResult> getManagedEndpointSessionCredentialsAsync(GetManagedEndpointSessionCredentialsRequest request)
AmazonEMRContainersAsync
Generate a session token to connect to a managed endpoint.
getManagedEndpointSessionCredentialsAsync
in interface AmazonEMRContainersAsync
public Future<GetManagedEndpointSessionCredentialsResult> getManagedEndpointSessionCredentialsAsync(GetManagedEndpointSessionCredentialsRequest request, AsyncHandler<GetManagedEndpointSessionCredentialsRequest,GetManagedEndpointSessionCredentialsResult> asyncHandler)
AmazonEMRContainersAsync
Generate a session token to connect to a managed endpoint.
getManagedEndpointSessionCredentialsAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<ListJobRunsResult> listJobRunsAsync(ListJobRunsRequest request)
AmazonEMRContainersAsync
Lists job runs based on a set of parameters. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
listJobRunsAsync
in interface AmazonEMRContainersAsync
public Future<ListJobRunsResult> listJobRunsAsync(ListJobRunsRequest request, AsyncHandler<ListJobRunsRequest,ListJobRunsResult> asyncHandler)
AmazonEMRContainersAsync
Lists job runs based on a set of parameters. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
listJobRunsAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<ListJobTemplatesResult> listJobTemplatesAsync(ListJobTemplatesRequest request)
AmazonEMRContainersAsync
Lists job templates based on a set of parameters. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
listJobTemplatesAsync
in interface AmazonEMRContainersAsync
public Future<ListJobTemplatesResult> listJobTemplatesAsync(ListJobTemplatesRequest request, AsyncHandler<ListJobTemplatesRequest,ListJobTemplatesResult> asyncHandler)
AmazonEMRContainersAsync
Lists job templates based on a set of parameters. Job template stores values of StartJobRun API request in a template and can be used to start a job run. Job template allows two use cases: avoid repeating recurring StartJobRun API request values, enforcing certain values in StartJobRun API request.
listJobTemplatesAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<ListManagedEndpointsResult> listManagedEndpointsAsync(ListManagedEndpointsRequest request)
AmazonEMRContainersAsync
Lists managed endpoints based on a set of parameters. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
listManagedEndpointsAsync
in interface AmazonEMRContainersAsync
public Future<ListManagedEndpointsResult> listManagedEndpointsAsync(ListManagedEndpointsRequest request, AsyncHandler<ListManagedEndpointsRequest,ListManagedEndpointsResult> asyncHandler)
AmazonEMRContainersAsync
Lists managed endpoints based on a set of parameters. A managed endpoint is a gateway that connects Amazon EMR Studio to Amazon EMR on EKS so that Amazon EMR Studio can communicate with your virtual cluster.
listManagedEndpointsAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<ListSecurityConfigurationsResult> listSecurityConfigurationsAsync(ListSecurityConfigurationsRequest request)
AmazonEMRContainersAsync
Lists security configurations based on a set of parameters. Security configurations in Amazon EMR on EKS are templates for different security setups. You can use security configurations to configure the Lake Formation integration setup. You can also create a security configuration to re-use a security setup each time you create a virtual cluster.
listSecurityConfigurationsAsync
in interface AmazonEMRContainersAsync
public Future<ListSecurityConfigurationsResult> listSecurityConfigurationsAsync(ListSecurityConfigurationsRequest request, AsyncHandler<ListSecurityConfigurationsRequest,ListSecurityConfigurationsResult> asyncHandler)
AmazonEMRContainersAsync
Lists security configurations based on a set of parameters. Security configurations in Amazon EMR on EKS are templates for different security setups. You can use security configurations to configure the Lake Formation integration setup. You can also create a security configuration to re-use a security setup each time you create a virtual cluster.
listSecurityConfigurationsAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<ListTagsForResourceResult> listTagsForResourceAsync(ListTagsForResourceRequest request)
AmazonEMRContainersAsync
Lists the tags assigned to the resources.
listTagsForResourceAsync
in interface AmazonEMRContainersAsync
public Future<ListTagsForResourceResult> listTagsForResourceAsync(ListTagsForResourceRequest request, AsyncHandler<ListTagsForResourceRequest,ListTagsForResourceResult> asyncHandler)
AmazonEMRContainersAsync
Lists the tags assigned to the resources.
listTagsForResourceAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<ListVirtualClustersResult> listVirtualClustersAsync(ListVirtualClustersRequest request)
AmazonEMRContainersAsync
Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
listVirtualClustersAsync
in interface AmazonEMRContainersAsync
public Future<ListVirtualClustersResult> listVirtualClustersAsync(ListVirtualClustersRequest request, AsyncHandler<ListVirtualClustersRequest,ListVirtualClustersResult> asyncHandler)
AmazonEMRContainersAsync
Lists information about the specified virtual cluster. Virtual cluster is a managed entity on Amazon EMR on EKS. You can create, describe, list and delete virtual clusters. They do not consume any additional resource in your system. A single virtual cluster maps to a single Kubernetes namespace. Given this relationship, you can model virtual clusters the same way you model Kubernetes namespaces to meet your requirements.
listVirtualClustersAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<StartJobRunResult> startJobRunAsync(StartJobRunRequest request)
AmazonEMRContainersAsync
Starts a job run. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
startJobRunAsync
in interface AmazonEMRContainersAsync
public Future<StartJobRunResult> startJobRunAsync(StartJobRunRequest request, AsyncHandler<StartJobRunRequest,StartJobRunResult> asyncHandler)
AmazonEMRContainersAsync
Starts a job run. A job run is a unit of work, such as a Spark jar, PySpark script, or SparkSQL query, that you submit to Amazon EMR on EKS.
startJobRunAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<TagResourceResult> tagResourceAsync(TagResourceRequest request)
AmazonEMRContainersAsync
Assigns tags to resources. A tag is a label that you assign to an Amazon Web Services resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your Amazon Web Services resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.
tagResourceAsync
in interface AmazonEMRContainersAsync
public Future<TagResourceResult> tagResourceAsync(TagResourceRequest request, AsyncHandler<TagResourceRequest,TagResourceResult> asyncHandler)
AmazonEMRContainersAsync
Assigns tags to resources. A tag is a label that you assign to an Amazon Web Services resource. Each tag consists of a key and an optional value, both of which you define. Tags enable you to categorize your Amazon Web Services resources by attributes such as purpose, owner, or environment. When you have many resources of the same type, you can quickly identify a specific resource based on the tags you've assigned to it. For example, you can define a set of tags for your Amazon EMR on EKS clusters to help you track each cluster's owner and stack level. We recommend that you devise a consistent set of tag keys for each resource type. You can then search and filter the resources based on the tags that you add.
tagResourceAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<UntagResourceResult> untagResourceAsync(UntagResourceRequest request)
AmazonEMRContainersAsync
Removes tags from resources.
untagResourceAsync
in interface AmazonEMRContainersAsync
public Future<UntagResourceResult> untagResourceAsync(UntagResourceRequest request, AsyncHandler<UntagResourceRequest,UntagResourceResult> asyncHandler)
AmazonEMRContainersAsync
Removes tags from resources.
untagResourceAsync
in interface AmazonEMRContainersAsync
asyncHandler
- Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.