@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class AttributeConfig extends Object implements Serializable, Cloneable, StructuredPojo
Provides information about the method used to transform attributes.
The following is an example using the RETAIL domain:
{
"AttributeName": "demand",
"Transformations": {"aggregation": "sum", "middlefill": "zero", "backfill": "zero"}
}
Constructor and Description |
---|
AttributeConfig() |
Modifier and Type | Method and Description |
---|---|
AttributeConfig |
addTransformationsEntry(String key,
String value)
Add a single Transformations entry
|
AttributeConfig |
clearTransformationsEntries()
Removes all the entries added into Transformations.
|
AttributeConfig |
clone() |
boolean |
equals(Object obj) |
String |
getAttributeName()
The name of the attribute as specified in the schema.
|
Map<String,String> |
getTransformations()
The method parameters (key-value pairs), which are a map of override parameters.
|
int |
hashCode() |
void |
marshall(ProtocolMarshaller protocolMarshaller)
Marshalls this structured data using the given
ProtocolMarshaller . |
void |
setAttributeName(String attributeName)
The name of the attribute as specified in the schema.
|
void |
setTransformations(Map<String,String> transformations)
The method parameters (key-value pairs), which are a map of override parameters.
|
String |
toString()
Returns a string representation of this object.
|
AttributeConfig |
withAttributeName(String attributeName)
The name of the attribute as specified in the schema.
|
AttributeConfig |
withTransformations(Map<String,String> transformations)
The method parameters (key-value pairs), which are a map of override parameters.
|
public void setAttributeName(String attributeName)
The name of the attribute as specified in the schema. Amazon Forecast supports the target field of the target
time series and the related time series datasets. For example, for the RETAIL domain, the target is
demand
.
attributeName
- The name of the attribute as specified in the schema. Amazon Forecast supports the target field of the
target time series and the related time series datasets. For example, for the RETAIL domain, the target is
demand
.public String getAttributeName()
The name of the attribute as specified in the schema. Amazon Forecast supports the target field of the target
time series and the related time series datasets. For example, for the RETAIL domain, the target is
demand
.
demand
.public AttributeConfig withAttributeName(String attributeName)
The name of the attribute as specified in the schema. Amazon Forecast supports the target field of the target
time series and the related time series datasets. For example, for the RETAIL domain, the target is
demand
.
attributeName
- The name of the attribute as specified in the schema. Amazon Forecast supports the target field of the
target time series and the related time series datasets. For example, for the RETAIL domain, the target is
demand
.public Map<String,String> getTransformations()
The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.
The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.
aggregation
: sum, avg
, first
, min
, max
frontfill
: none
middlefill
: zero, nan
(not a number), value
, median
,
mean
, min
, max
backfill
: zero, nan
, value
, median
, mean
,
min
, max
The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):
middlefill
: zero
, value
, median
, mean
,
min
, max
backfill
: zero
, value
, median
, mean
,
min
, max
futurefill
: zero
, value
, median
, mean
,
min
, max
To set a filling method to a specific value, set the fill parameter to value
and define the value in
a corresponding _value
parameter. For example, to set backfilling to a value of 2, include the
following: "backfill": "value"
and "backfill_value":"2"
.
The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.
aggregation
: sum, avg
, first
, min
,
max
frontfill
: none
middlefill
: zero, nan
(not a number), value
,
median
, mean
, min
, max
backfill
: zero, nan
, value
, median
,
mean
, min
, max
The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):
middlefill
: zero
, value
, median
, mean
,
min
, max
backfill
: zero
, value
, median
, mean
,
min
, max
futurefill
: zero
, value
, median
, mean
,
min
, max
To set a filling method to a specific value, set the fill parameter to value
and define the
value in a corresponding _value
parameter. For example, to set backfilling to a value of 2,
include the following: "backfill": "value"
and "backfill_value":"2"
.
public void setTransformations(Map<String,String> transformations)
The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.
The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.
aggregation
: sum, avg
, first
, min
, max
frontfill
: none
middlefill
: zero, nan
(not a number), value
, median
,
mean
, min
, max
backfill
: zero, nan
, value
, median
, mean
,
min
, max
The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):
middlefill
: zero
, value
, median
, mean
,
min
, max
backfill
: zero
, value
, median
, mean
,
min
, max
futurefill
: zero
, value
, median
, mean
,
min
, max
To set a filling method to a specific value, set the fill parameter to value
and define the value in
a corresponding _value
parameter. For example, to set backfilling to a value of 2, include the
following: "backfill": "value"
and "backfill_value":"2"
.
transformations
- The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters
to override the default values. Related Time Series attributes do not accept aggregation parameters.
The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.
aggregation
: sum, avg
, first
, min
,
max
frontfill
: none
middlefill
: zero, nan
(not a number), value
,
median
, mean
, min
, max
backfill
: zero, nan
, value
, median
,
mean
, min
, max
The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):
middlefill
: zero
, value
, median
, mean
,
min
, max
backfill
: zero
, value
, median
, mean
,
min
, max
futurefill
: zero
, value
, median
, mean
,
min
, max
To set a filling method to a specific value, set the fill parameter to value
and define the
value in a corresponding _value
parameter. For example, to set backfilling to a value of 2,
include the following: "backfill": "value"
and "backfill_value":"2"
.
public AttributeConfig withTransformations(Map<String,String> transformations)
The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.
The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.
aggregation
: sum, avg
, first
, min
, max
frontfill
: none
middlefill
: zero, nan
(not a number), value
, median
,
mean
, min
, max
backfill
: zero, nan
, value
, median
, mean
,
min
, max
The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):
middlefill
: zero
, value
, median
, mean
,
min
, max
backfill
: zero
, value
, median
, mean
,
min
, max
futurefill
: zero
, value
, median
, mean
,
min
, max
To set a filling method to a specific value, set the fill parameter to value
and define the value in
a corresponding _value
parameter. For example, to set backfilling to a value of 2, include the
following: "backfill": "value"
and "backfill_value":"2"
.
transformations
- The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters
to override the default values. Related Time Series attributes do not accept aggregation parameters.
The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Default values are bolded.
aggregation
: sum, avg
, first
, min
,
max
frontfill
: none
middlefill
: zero, nan
(not a number), value
,
median
, mean
, min
, max
backfill
: zero, nan
, value
, median
,
mean
, min
, max
The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):
middlefill
: zero
, value
, median
, mean
,
min
, max
backfill
: zero
, value
, median
, mean
,
min
, max
futurefill
: zero
, value
, median
, mean
,
min
, max
To set a filling method to a specific value, set the fill parameter to value
and define the
value in a corresponding _value
parameter. For example, to set backfilling to a value of 2,
include the following: "backfill": "value"
and "backfill_value":"2"
.
public AttributeConfig addTransformationsEntry(String key, String value)
public AttributeConfig clearTransformationsEntries()
public String toString()
toString
in class Object
Object.toString()
public AttributeConfig clone()
public void marshall(ProtocolMarshaller protocolMarshaller)
StructuredPojo
ProtocolMarshaller
.marshall
in interface StructuredPojo
protocolMarshaller
- Implementation of ProtocolMarshaller
used to marshall this object's data.