@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class ClarifyShapConfig extends Object implements Serializable, Cloneable, StructuredPojo
The configuration for SHAP analysis using SageMaker Clarify Explainer.
Constructor and Description |
---|
ClarifyShapConfig() |
Modifier and Type | Method and Description |
---|---|
ClarifyShapConfig |
clone() |
boolean |
equals(Object obj) |
Integer |
getNumberOfSamples()
The number of samples to be used for analysis by the Kernal SHAP algorithm.
|
Integer |
getSeed()
The starting value used to initialize the random number generator in the explainer.
|
ClarifyShapBaselineConfig |
getShapBaselineConfig()
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
|
ClarifyTextConfig |
getTextConfig()
A parameter that indicates if text features are treated as text and explanations are provided for individual
units of text.
|
Boolean |
getUseLogit()
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model
predictions.
|
int |
hashCode() |
Boolean |
isUseLogit()
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model
predictions.
|
void |
marshall(ProtocolMarshaller protocolMarshaller)
Marshalls this structured data using the given
ProtocolMarshaller . |
void |
setNumberOfSamples(Integer numberOfSamples)
The number of samples to be used for analysis by the Kernal SHAP algorithm.
|
void |
setSeed(Integer seed)
The starting value used to initialize the random number generator in the explainer.
|
void |
setShapBaselineConfig(ClarifyShapBaselineConfig shapBaselineConfig)
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
|
void |
setTextConfig(ClarifyTextConfig textConfig)
A parameter that indicates if text features are treated as text and explanations are provided for individual
units of text.
|
void |
setUseLogit(Boolean useLogit)
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model
predictions.
|
String |
toString()
Returns a string representation of this object.
|
ClarifyShapConfig |
withNumberOfSamples(Integer numberOfSamples)
The number of samples to be used for analysis by the Kernal SHAP algorithm.
|
ClarifyShapConfig |
withSeed(Integer seed)
The starting value used to initialize the random number generator in the explainer.
|
ClarifyShapConfig |
withShapBaselineConfig(ClarifyShapBaselineConfig shapBaselineConfig)
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
|
ClarifyShapConfig |
withTextConfig(ClarifyTextConfig textConfig)
A parameter that indicates if text features are treated as text and explanations are provided for individual
units of text.
|
ClarifyShapConfig |
withUseLogit(Boolean useLogit)
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model
predictions.
|
public void setShapBaselineConfig(ClarifyShapBaselineConfig shapBaselineConfig)
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
shapBaselineConfig
- The configuration for the SHAP baseline of the Kernal SHAP algorithm.public ClarifyShapBaselineConfig getShapBaselineConfig()
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
public ClarifyShapConfig withShapBaselineConfig(ClarifyShapBaselineConfig shapBaselineConfig)
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
shapBaselineConfig
- The configuration for the SHAP baseline of the Kernal SHAP algorithm.public void setNumberOfSamples(Integer numberOfSamples)
The number of samples to be used for analysis by the Kernal SHAP algorithm.
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
numberOfSamples
- The number of samples to be used for analysis by the Kernal SHAP algorithm. The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
public Integer getNumberOfSamples()
The number of samples to be used for analysis by the Kernal SHAP algorithm.
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
public ClarifyShapConfig withNumberOfSamples(Integer numberOfSamples)
The number of samples to be used for analysis by the Kernal SHAP algorithm.
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
numberOfSamples
- The number of samples to be used for analysis by the Kernal SHAP algorithm. The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint.
public void setUseLogit(Boolean useLogit)
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
useLogit
- A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for
model predictions. Defaults to false.public Boolean getUseLogit()
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
public ClarifyShapConfig withUseLogit(Boolean useLogit)
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
useLogit
- A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for
model predictions. Defaults to false.public Boolean isUseLogit()
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
public void setSeed(Integer seed)
The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.
seed
- The starting value used to initialize the random number generator in the explainer. Provide a value for
this parameter to obtain a deterministic SHAP result.public Integer getSeed()
The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.
public ClarifyShapConfig withSeed(Integer seed)
The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.
seed
- The starting value used to initialize the random number generator in the explainer. Provide a value for
this parameter to obtain a deterministic SHAP result.public void setTextConfig(ClarifyTextConfig textConfig)
A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.
textConfig
- A parameter that indicates if text features are treated as text and explanations are provided for
individual units of text. Required for natural language processing (NLP) explainability only.public ClarifyTextConfig getTextConfig()
A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.
public ClarifyShapConfig withTextConfig(ClarifyTextConfig textConfig)
A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.
textConfig
- A parameter that indicates if text features are treated as text and explanations are provided for
individual units of text. Required for natural language processing (NLP) explainability only.public String toString()
toString
in class Object
Object.toString()
public ClarifyShapConfig clone()
public void marshall(ProtocolMarshaller protocolMarshaller)
StructuredPojo
ProtocolMarshaller
.marshall
in interface StructuredPojo
protocolMarshaller
- Implementation of ProtocolMarshaller
used to marshall this object's data.