Modellieren von Qualitätsmetriken - Amazon SageMaker

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Modellieren von Qualitätsmetriken

Bei Aufträgen zur Überwachung der Modellqualität werden je nach ML-Problemtyp unterschiedliche Metriken berechnet. Die folgenden Abschnitte enthalten die für jeden ML-Problemtyp analysierten Metriken.

Anmerkung

Die Standardabweichung für Metriken wird nur angegeben, wenn mindestens 200 Stichproben verfügbar sind. Model Monitor berechnet die Standardabweichung, indem 80% der Daten fünfmal nach dem Zufallsprinzip entnommen werden, die Metrik berechnet und die Standardabweichung für diese Ergebnisse verwendet wird.

Regressionsmetriken

Im Folgenden wird ein Beispiel für die Metriken gezeigt, die Model Quality Monitor für ein Regressionsproblem berechnet.

"regression_metrics" : { "mae" : { "value" : 0.3711832061068702, "standard_deviation" : 0.0037566388129940394 }, "mse" : { "value" : 0.3711832061068702, "standard_deviation" : 0.0037566388129940524 }, "rmse" : { "value" : 0.609248066149471, "standard_deviation" : 0.003079253267651125 }, "r2" : { "value" : -1.3766111872212665, "standard_deviation" : 0.022653980022771227 } }

Binäre Klassifizierungsmetriken

Im Folgenden wird ein Beispiel für die Metriken gezeigt, die Model Quality Monitor für ein binäres Klassifizierungsproblem berechnet.

"binary_classification_metrics" : { "confusion_matrix" : { "0" : { "0" : 1, "1" : 2 }, "1" : { "0" : 0, "1" : 1 } }, "recall" : { "value" : 1.0, "standard_deviation" : "NaN" }, "precision" : { "value" : 0.3333333333333333, "standard_deviation" : "NaN" }, "accuracy" : { "value" : 0.5, "standard_deviation" : "NaN" }, "recall_best_constant_classifier" : { "value" : 1.0, "standard_deviation" : "NaN" }, "precision_best_constant_classifier" : { "value" : 0.25, "standard_deviation" : "NaN" }, "accuracy_best_constant_classifier" : { "value" : 0.25, "standard_deviation" : "NaN" }, "true_positive_rate" : { "value" : 1.0, "standard_deviation" : "NaN" }, "true_negative_rate" : { "value" : 0.33333333333333337, "standard_deviation" : "NaN" }, "false_positive_rate" : { "value" : 0.6666666666666666, "standard_deviation" : "NaN" }, "false_negative_rate" : { "value" : 0.0, "standard_deviation" : "NaN" }, "receiver_operating_characteristic_curve" : { "false_positive_rates" : [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 ], "true_positive_rates" : [ 0.0, 0.25, 0.5, 0.75, 1.0, 1.0 ] }, "precision_recall_curve" : { "precisions" : [ 1.0, 1.0, 1.0, 1.0, 1.0 ], "recalls" : [ 0.0, 0.25, 0.5, 0.75, 1.0 ] }, "auc" : { "value" : 1.0, "standard_deviation" : "NaN" }, "f0_5" : { "value" : 0.3846153846153846, "standard_deviation" : "NaN" }, "f1" : { "value" : 0.5, "standard_deviation" : "NaN" }, "f2" : { "value" : 0.7142857142857143, "standard_deviation" : "NaN" }, "f0_5_best_constant_classifier" : { "value" : 0.29411764705882354, "standard_deviation" : "NaN" }, "f1_best_constant_classifier" : { "value" : 0.4, "standard_deviation" : "NaN" }, "f2_best_constant_classifier" : { "value" : 0.625, "standard_deviation" : "NaN" } }

Mehrklassen-Metriken

Im Folgenden wird ein Beispiel für die Metriken gezeigt, die Model Quality Monitor für ein Klassifizierungsproblem mit mehreren Klassen berechnet.

"multiclass_classification_metrics" : { "confusion_matrix" : { "0" : { "0" : 1180, "1" : 510 }, "1" : { "0" : 268, "1" : 138 } }, "accuracy" : { "value" : 0.6288167938931297, "standard_deviation" : 0.00375663881299405 }, "weighted_recall" : { "value" : 0.6288167938931297, "standard_deviation" : 0.003756638812994008 }, "weighted_precision" : { "value" : 0.6983172269629505, "standard_deviation" : 0.006195912915307507 }, "weighted_f0_5" : { "value" : 0.6803947317178771, "standard_deviation" : 0.005328406973561699 }, "weighted_f1" : { "value" : 0.6571162346664904, "standard_deviation" : 0.004385008075019733 }, "weighted_f2" : { "value" : 0.6384024354394601, "standard_deviation" : 0.003867109755267757 }, "accuracy_best_constant_classifier" : { "value" : 0.19370229007633588, "standard_deviation" : 0.0032049848450732355 }, "weighted_recall_best_constant_classifier" : { "value" : 0.19370229007633588, "standard_deviation" : 0.0032049848450732355 }, "weighted_precision_best_constant_classifier" : { "value" : 0.03752057718081697, "standard_deviation" : 0.001241536088657851 }, "weighted_f0_5_best_constant_classifier" : { "value" : 0.04473443104152011, "standard_deviation" : 0.0014460485504284792 }, "weighted_f1_best_constant_classifier" : { "value" : 0.06286421244683643, "standard_deviation" : 0.0019113576884608862 }, "weighted_f2_best_constant_classifier" : { "value" : 0.10570313141262414, "standard_deviation" : 0.002734216826748117 } }