Cette documentation concerne AWS CLI uniquement la version 1 du. Pour la documentation relative à la version 2 du AWS CLI, consultez le guide de l'utilisateur de la version 2.
Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Exemples d'Amazon Comprehend utilisant AWS CLI
Les exemples de code suivants vous montrent comment effectuer des actions et implémenter des scénarios courants à l' AWS Command Line Interface aide d'Amazon Comprehend.
Les actions sont des extraits de code de programmes plus larges et doivent être exécutées dans leur contexte. Alors que les actions vous indiquent comment appeler des fonctions de service individuelles, vous pouvez les voir en contexte dans leurs scénarios associés.
Chaque exemple inclut un lien vers le code source complet, où vous trouverez des instructions sur la façon de configurer et d'exécuter le code en contexte.
Rubriques
Actions
L'exemple de code suivant montre comment utiliserbatch-detect-dominant-language.
- AWS CLI
-
Pour détecter la langue dominante de plusieurs textes d'entrée
L'
batch-detect-dominant-languageexemple suivant analyse plusieurs textes d'entrée et renvoie la langue dominante de chacun d'entre eux. Le score de confiance des modèles pré-entraînés est également généré pour chaque prédiction.aws comprehend batch-detect-dominant-language \ --text-list"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."Sortie :
{ "ResultList": [ { "Index": 0, "Languages": [ { "LanguageCode": "en", "Score": 0.9986501932144165 } ] } ], "ErrorList": [] }Pour plus d'informations, consultez Dominant Language dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous BatchDetectDominantLanguage
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserbatch-detect-entities.
- AWS CLI
-
Pour détecter des entités à partir de plusieurs textes d'entrée
L'
batch-detect-entitiesexemple suivant analyse plusieurs textes d'entrée et renvoie les entités nommées de chacun d'entre eux. Le score de confiance du modèle préentraîné est également généré pour chaque prédiction.aws comprehend batch-detect-entities \ --language-code en \ --text-list"Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st.""Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."Sortie :
{ "ResultList": [ { "Index": 0, "Entities": [ { "Score": 0.9985517859458923, "Type": "PERSON", "Text": "Jane", "BeginOffset": 5, "EndOffset": 9 }, { "Score": 0.9767839312553406, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 16, "EndOffset": 50 }, { "Score": 0.9856694936752319, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 71, "EndOffset": 90 }, { "Score": 0.9652159810066223, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.9986667037010193, "Type": "DATE", "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 1, "Entities": [ { "Score": 0.720084547996521, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9865870475769043, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.5895616412162781, "Type": "LOCATION", "Text": "Anywhere", "BeginOffset": 60, "EndOffset": 68 }, { "Score": 0.6809214353561401, "Type": "PERSON", "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9979087114334106, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }Pour plus d'informations, consultez Entities dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous BatchDetectEntities
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserbatch-detect-key-phrases.
- AWS CLI
-
Pour détecter les phrases clés de plusieurs entrées de texte
L'
batch-detect-key-phrasesexemple suivant analyse plusieurs textes d'entrée et renvoie les phrases nominales clés de chacun d'entre eux. Le score de confiance du modèle préentraîné pour chaque prédiction est également généré.aws comprehend batch-detect-key-phrases \ --language-code en \ --text-list"Hello Zhang Wei, I am John, writing to you about the trip for next Saturday.""Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st.""Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."Sortie :
{ "ResultList": [ { "Index": 0, "KeyPhrases": [ { "Score": 0.99700927734375, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9929308891296387, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9997230172157288, "Text": "the trip", "BeginOffset": 49, "EndOffset": 57 }, { "Score": 0.9999470114707947, "Text": "next Saturday", "BeginOffset": 62, "EndOffset": 75 } ] }, { "Index": 1, "KeyPhrases": [ { "Score": 0.8358274102210999, "Text": "Dear Jane", "BeginOffset": 0, "EndOffset": 9 }, { "Score": 0.989359974861145, "Text": "Your AnyCompany Financial Services", "BeginOffset": 11, "EndOffset": 45 }, { "Score": 0.8812323808670044, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 47, "EndOffset": 90 }, { "Score": 0.9999381899833679, "Text": "a minimum payment", "BeginOffset": 95, "EndOffset": 112 }, { "Score": 0.9997439980506897, "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.996875524520874, "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 2, "KeyPhrases": [ { "Score": 0.9990295767784119, "Text": "customer feedback", "BeginOffset": 12, "EndOffset": 29 }, { "Score": 0.9994127750396729, "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9892991185188293, "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.9969810843467712, "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9703696370124817, "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }Pour plus d'informations, consultez les phrases clés du manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous BatchDetectKeyPhrases
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserbatch-detect-sentiment.
- AWS CLI
-
Pour détecter le sentiment qui prévaut lors de plusieurs saisies de textes
L'
batch-detect-sentimentexemple suivant analyse plusieurs textes saisis et renvoie le sentiment dominant (POSITIVE,NEUTRALMIXED, ouNEGATIVE, de chacun d'eux).aws comprehend batch-detect-sentiment \ --text-list"That movie was very boring, I can't believe it was over four hours long.""It is a beautiful day for hiking today.""My meal was okay, I'm excited to try other restaurants."\ --language-codeenSortie :
{ "ResultList": [ { "Index": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.00011316669406369328, "Negative": 0.9995445609092712, "Neutral": 0.00014722718333359808, "Mixed": 0.00019498742767609656 } }, { "Index": 1, "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9981263279914856, "Negative": 0.00015240783977787942, "Neutral": 0.0013876151060685515, "Mixed": 0.00033366199932061136 } }, { "Index": 2, "Sentiment": "MIXED", "SentimentScore": { "Positive": 0.15930435061454773, "Negative": 0.11471917480230331, "Neutral": 0.26897063851356506, "Mixed": 0.45700588822364807 } } ], "ErrorList": [] }Pour plus d'informations, consultez Sentiment dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous BatchDetectSentiment
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserbatch-detect-syntax.
- AWS CLI
-
Pour inspecter la syntaxe et les parties du discours des mots dans plusieurs textes d'entrée
L'
batch-detect-syntaxexemple suivant analyse la syntaxe de plusieurs textes d'entrée et renvoie les différentes parties du discours. Le score de confiance du modèle préentraîné est également généré pour chaque prédiction.aws comprehend batch-detect-syntax \ --text-list"It is a beautiful day.""Can you please pass the salt?""Please pay the bill before the 31st."\ --language-codeenSortie :
{ "ResultList": [ { "Index": 0, "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999937117099762 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999926686286926 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987891912460327 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999778866767883 } }, { "TokenId": 6, "Text": ".", "BeginOffset": 21, "EndOffset": 22, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999974966049194 } } ] }, { "Index": 1, "SyntaxTokens": [ { "TokenId": 1, "Text": "Can", "BeginOffset": 0, "EndOffset": 3, "PartOfSpeech": { "Tag": "AUX", "Score": 0.9999770522117615 } }, { "TokenId": 2, "Text": "you", "BeginOffset": 4, "EndOffset": 7, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999986886978149 } }, { "TokenId": 3, "Text": "please", "BeginOffset": 8, "EndOffset": 14, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9681622385978699 } }, { "TokenId": 4, "Text": "pass", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999874830245972 } }, { "TokenId": 5, "Text": "the", "BeginOffset": 20, "EndOffset": 23, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999827146530151 } }, { "TokenId": 6, "Text": "salt", "BeginOffset": 24, "EndOffset": 28, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9995040893554688 } }, { "TokenId": 7, "Text": "?", "BeginOffset": 28, "EndOffset": 29, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.999998152256012 } } ] }, { "Index": 2, "SyntaxTokens": [ { "TokenId": 1, "Text": "Please", "BeginOffset": 0, "EndOffset": 6, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9997857809066772 } }, { "TokenId": 2, "Text": "pay", "BeginOffset": 7, "EndOffset": 10, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999252557754517 } }, { "TokenId": 3, "Text": "the", "BeginOffset": 11, "EndOffset": 14, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999842643737793 } }, { "TokenId": 4, "Text": "bill", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999588131904602 } }, { "TokenId": 5, "Text": "before", "BeginOffset": 20, "EndOffset": 26, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9958304762840271 } }, { "TokenId": 6, "Text": "the", "BeginOffset": 27, "EndOffset": 30, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999947547912598 } }, { "TokenId": 7, "Text": "31st", "BeginOffset": 31, "EndOffset": 35, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9924124479293823 } }, { "TokenId": 8, "Text": ".", "BeginOffset": 35, "EndOffset": 36, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999955892562866 } } ] } ], "ErrorList": [] }Pour plus d'informations, consultez la section Analyse syntaxique dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous BatchDetectSyntax
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserbatch-detect-targeted-sentiment.
- AWS CLI
-
Pour détecter le sentiment et chaque entité nommée pour plusieurs textes d'entrée
L'
batch-detect-targeted-sentimentexemple suivant analyse plusieurs textes saisis et renvoie les entités nommées ainsi que le sentiment dominant associé à chaque entité. Le score de confiance du modèle préentraîné est également généré pour chaque prédiction.aws comprehend batch-detect-targeted-sentiment \ --language-code en \ --text-list"That movie was really boring, the original was way more entertaining""The trail is extra beautiful today.""My meal was just okay."Sortie :
{ "ResultList": [ { "Index": 0, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999009966850281, "GroupScore": 1.0, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.13887299597263336, "Negative": 0.8057460188865662, "Neutral": 0.05525200068950653, "Mixed": 0.00012799999967683107 } }, "BeginOffset": 5, "EndOffset": 10 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9921110272407532, "GroupScore": 1.0, "Text": "original", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999989867210388, "Negative": 9.999999974752427e-07, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 34, "EndOffset": 42 } ] } ] }, { "Index": 1, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.7545599937438965, "GroupScore": 1.0, "Text": "trail", "Type": "OTHER", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 4, "EndOffset": 9 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999960064888, "GroupScore": 1.0, "Text": "today", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 9.000000318337698e-06, "Negative": 1.9999999949504854e-06, "Neutral": 0.9999859929084778, "Mixed": 3.999999989900971e-06 } }, "BeginOffset": 29, "EndOffset": 34 } ] } ] }, { "Index": 2, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999880194664001, "GroupScore": 1.0, "Text": "My", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 2 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9995260238647461, "GroupScore": 1.0, "Text": "meal", "Type": "OTHER", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.04695599898695946, "Negative": 0.003226999891921878, "Neutral": 0.6091709733009338, "Mixed": 0.34064599871635437 } }, "BeginOffset": 3, "EndOffset": 7 } ] } ] } ], "ErrorList": [] }Pour plus d'informations, consultez Targeted Sentiment dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous BatchDetectTargetedSentiment
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserclassify-document.
- AWS CLI
-
Pour classer un document avec un point de terminaison spécifique au modèle
L'
classify-documentexemple suivant classe un document avec le point final d'un modèle personnalisé. Le modèle de cet exemple a été entraîné sur un ensemble de données contenant des messages SMS étiquetés comme spam ou non, ou « ham ».aws comprehend classify-document \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint\ --text"CONGRATULATIONS! TXT 1235550100 to win $5000"Sortie :
{ "Classes": [ { "Name": "spam", "Score": 0.9998599290847778 }, { "Name": "ham", "Score": 0.00014001205272506922 } ] }Pour plus d'informations, consultez la section Classification personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ClassifyDocument
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utilisercontains-pii-entities.
- AWS CLI
-
Pour analyser le texte saisi pour détecter la présence d'informations personnelles
L'
contains-pii-entitiesexemple suivant analyse le texte saisi pour détecter la présence d'informations personnelles identifiables (PII) et renvoie les étiquettes des types d'entités PII identifiés tels que le nom, l'adresse, le numéro de compte bancaire ou le numéro de téléphone.aws comprehend contains-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. Customer feedback for Sunshine Spa, 100 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Sortie :
{ "Labels": [ { "Name": "NAME", "Score": 1.0 }, { "Name": "EMAIL", "Score": 1.0 }, { "Name": "BANK_ACCOUNT_NUMBER", "Score": 0.9995794296264648 }, { "Name": "BANK_ROUTING", "Score": 0.9173126816749573 }, { "Name": "CREDIT_DEBIT_NUMBER", "Score": 1.0 } }Pour plus d'informations, consultez la section Informations personnelles identifiables (PII) dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ContainsPiiEntities
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utilisercreate-dataset.
- AWS CLI
-
Pour créer un jeu de données sur le volant
L'
create-datasetexemple suivant crée un jeu de données pour un volant d'inertie. Cet ensemble de données sera utilisé comme données d'entraînement supplémentaires, comme indiqué par la--dataset-typebalise.aws comprehend create-dataset \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity\ --dataset-nameexample-dataset\ --dataset-type"TRAIN"\ --input-data-configfile://inputConfig.jsonContenu de
file://inputConfig.json:{ "DataFormat": "COMPREHEND_CSV", "DocumentClassifierInputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/training-data.csv" } }Sortie :
{ "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset" }Pour plus d'informations, consultez la présentation de Flywheel dans le guide du développeur Amazon Comprehend.
-
Pour plus de détails sur l'API, reportez-vous CreateDataset
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utilisercreate-document-classifier.
- AWS CLI
-
Pour créer un classificateur de documents afin de classer les documents
L'
create-document-classifierexemple suivant commence le processus de formation pour un modèle de classificateur de documents. Le fichier de données d'training.csventraînement se trouve dans le--input-data-configtag.training.csvest un document à deux colonnes où les étiquettes ou les classifications sont fournies dans la première colonne et les documents sont fournis dans la deuxième colonne.aws comprehend create-document-classifier \ --document-classifier-nameexample-classifier\ --data-access-arnarn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --language-codeenSortie :
{ "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }Pour plus d'informations, consultez la section Classification personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous CreateDocumentClassifier
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utilisercreate-endpoint.
- AWS CLI
-
Pour créer un point de terminaison pour un modèle personnalisé
L'
create-endpointexemple suivant crée un point de terminaison pour l'inférence synchrone pour un modèle personnalisé préalablement entraîné.aws comprehend create-endpoint \ --endpoint-nameexample-classifier-endpoint-1\ --model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier\ --desired-inference-units1Sortie :
{ "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1" }Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous CreateEndpoint
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utilisercreate-entity-recognizer.
- AWS CLI
-
Pour créer un outil de reconnaissance d'entités personnalisé
L'
create-entity-recognizerexemple suivant lance le processus de formation pour un modèle de reconnaissance d'entités personnalisé. Cet exemple utilise un fichier CSV contenant des documents de formation et une liste d'entités CSVentity_list.csvpour entraîner le modèle.raw_text.csventity-list.csvcontient les colonnes suivantes : texte et type.aws comprehend create-entity-recognizer \ --recognizer-nameexample-entity-recognizer--data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --input-data-config"EntityTypes=[{Type=DEVICE}],Documents={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/raw_text.csv},EntityList={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv}"--language-codeenSortie :
{ "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:example-entity-recognizer/entityrecognizer1" }Pour plus d'informations, consultez la section Reconnaissance d'entités personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous CreateEntityRecognizer
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utilisercreate-flywheel.
- AWS CLI
-
Pour créer un volant
L'
create-flywheelexemple suivant crée un volant pour orchestrer la formation continue d'un modèle de classification de documents ou de reconnaissance d'entités. Dans cet exemple, le volant est créé pour gérer un modèle entraîné existant spécifié par le--active-model-arntag. Lorsque le volant est créé, un lac de données est créé au niveau de la--input-data-lakebalise.aws comprehend create-flywheel \ --flywheel-nameexample-flywheel\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --data-lake-s3-uri"s3://amzn-s3-demo-bucket"Sortie :
{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel" }Pour plus d'informations, consultez la présentation de Flywheel dans le guide du développeur Amazon Comprehend.
-
Pour plus de détails sur l'API, reportez-vous CreateFlywheel
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdelete-document-classifier.
- AWS CLI
-
Pour supprimer un classificateur de documents personnalisé
L'
delete-document-classifierexemple suivant supprime un modèle de classificateur de documents personnalisé.aws comprehend delete-document-classifier \ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1Cette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DeleteDocumentClassifier
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdelete-endpoint.
- AWS CLI
-
Pour supprimer un point de terminaison pour un modèle personnalisé
L'
delete-endpointexemple suivant supprime un point de terminaison spécifique au modèle. Tous les points de terminaison doivent être supprimés pour que le modèle soit supprimé.aws comprehend delete-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1Cette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DeleteEndpoint
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdelete-entity-recognizer.
- AWS CLI
-
Pour supprimer un modèle de reconnaissance d'entités personnalisé
L'
delete-entity-recognizerexemple suivant supprime un modèle de reconnaissance d'entités personnalisé.aws comprehend delete-entity-recognizer \ --entity-recognizer-arnarn:aws:comprehend:us-west-2:111122223333:entity-recognizer/example-entity-recognizer-1Cette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DeleteEntityRecognizer
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdelete-flywheel.
- AWS CLI
-
Pour supprimer un volant
L'
delete-flywheelexemple suivant supprime un volant. Le lac de données ou le modèle associé au volant n'est pas supprimé.aws comprehend delete-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1Cette commande ne produit aucun résultat.
Pour plus d'informations, consultez la présentation de Flywheel dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DeleteFlywheel
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdelete-resource-policy.
- AWS CLI
-
Pour supprimer une politique basée sur les ressources
L'
delete-resource-policyexemple suivant supprime une politique basée sur les ressources d'une ressource Amazon Comprehend.aws comprehend delete-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1/version/1Cette commande ne produit aucun résultat.
Pour plus d'informations, consultez Copier des modèles personnalisés entre AWS comptes dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DeleteResourcePolicy
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-dataset.
- AWS CLI
-
Pour décrire un jeu de données sur un volant
L'
describe-datasetexemple suivant permet d'obtenir les propriétés d'un jeu de données volant.aws comprehend describe-dataset \ --dataset-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-datasetSortie :
{ "DatasetProperties": { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset", "DatasetName": "example-dataset", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/12345678A123456Z/datasets/example-dataset/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" } }Pour plus d'informations, consultez la présentation de Flywheel dans le guide du développeur Amazon Comprehend.
-
Pour plus de détails sur l'API, reportez-vous DescribeDataset
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-document-classification-job.
- AWS CLI
-
Pour décrire une tâche de classification de documents
L'
describe-document-classification-jobexemple suivant obtient les propriétés d'une tâche de classification de documents asynchrone.aws comprehend describe-document-classification-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "DocumentClassificationJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/1", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }Pour plus d'informations, consultez la section Classification personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeDocumentClassificationJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-document-classifier.
- AWS CLI
-
Pour décrire un classificateur de documents
L'
describe-document-classifierexemple suivant permet d'obtenir les propriétés d'un modèle de classificateur de documents personnalisé.aws comprehend describe-document-classifier \ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1Sortie :
{ "DocumentClassifierProperties": { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "MULTI_CLASS" } }Pour plus d'informations, consultez la section Création et gestion de modèles personnalisés dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeDocumentClassifier
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-dominant-language-detection-job.
- AWS CLI
-
Décrire une tâche de détection du langage dominant.
L'
describe-dominant-language-detection-jobexemple suivant obtient les propriétés d'une tâche de détection de langue dominante asynchrone.aws comprehend describe-dominant-language-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "DominantLanguageDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeDominantLanguageDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-endpoint.
- AWS CLI
-
Pour décrire un point de terminaison spécifique
L'
describe-endpointexemple suivant obtient les propriétés d'un point de terminaison spécifique au modèle.aws comprehend describe-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpointSortie :
{ "EndpointProperties": { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint, "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } }Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeEndpoint
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-entities-detection-job.
- AWS CLI
-
Pour décrire une tâche de détection d'entités
L'
describe-entities-detection-jobexemple suivant obtient les propriétés d'une tâche de détection d'entités asynchrones.aws comprehend describe-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "EntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-entity-detector", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeEntitiesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-entity-recognizer.
- AWS CLI
-
Pour décrire un outil de reconnaissance d'entités
L'
describe-entity-recognizerexemple suivant permet d'obtenir les propriétés d'un modèle de reconnaissance d'entités personnalisé.aws comprehend describe-entity-recognizer \entity-recognizer-arnarn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1Sortie :
{ "EntityRecognizerProperties": { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "VersionName": "1" } }Pour plus d'informations, consultez la section Reconnaissance d'entités personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeEntityRecognizer
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-events-detection-job.
- AWS CLI
-
Pour décrire une tâche de détection d'événements.
L'
describe-events-detection-jobexemple suivant permet d'obtenir les propriétés d'une tâche de détection d'événements asynchrones.aws comprehend describe-events-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "EventsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "events_job_1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-12T18:45:56.054000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/EventsData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-EVENTS-123456abcdeb0e11022f22a11EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeEventsDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-flywheel-iteration.
- AWS CLI
-
Pour décrire une itération en volant
L'
describe-flywheel-iterationexemple suivant obtient les propriétés d'une itération au volant.aws comprehend describe-flywheel-iteration \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel\ --flywheel-iteration-id20232222AEXAMPLESortie :
{ "FlywheelIterationProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "FlywheelIterationId": "20232222AEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AveragePrecision": 0.8287636394041166, "AverageRecall": 0.7427084833645399, "AverageAccuracy": 0.8795394154118689 }, "TrainedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/Comprehend-Generated-v1-bb52d585", "TrainedModelMetrics": { "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-destination-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/evaluation/20230616T211026Z/" } }Pour plus d'informations, consultez la présentation de Flywheel dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeFlywheelIteration
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-flywheel.
- AWS CLI
-
Pour décrire un volant
L'
describe-flywheelexemple suivant permet d'obtenir les propriétés d'un volant d'inertie. Dans cet exemple, le modèle associé au volant est un modèle de classificateur personnalisé conçu pour classer les documents en tant que spam ou non-spam, ou en tant que « jambon ».aws comprehend describe-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheelSortie :
{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS", "Labels": [ "ham", "spam" ] } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-16T20:21:43.567000+00:00" } }Pour plus d'informations, consultez la présentation de Flywheel dans le guide du développeur Amazon Comprehend.
-
Pour plus de détails sur l'API, reportez-vous DescribeFlywheel
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-key-phrases-detection-job.
- AWS CLI
-
Pour décrire une tâche de détection de phrases clés
L'
describe-key-phrases-detection-jobexemple suivant obtient les propriétés d'une tâche de détection de phrases-clés asynchrones.aws comprehend describe-key-phrases-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "KeyPhrasesDetectionJobProperties": { "JobId": "69aa080c00fc68934a6a98f10EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/69aa080c00fc68934a6a98f10EXAMPLE", "JobName": "example-key-phrases-detection-job", "JobStatus": "COMPLETED", "SubmitTime": 1686606439.177, "EndTime": 1686606806.157, "InputDataConfig": { "S3Uri": "s3://dereksbucket1001/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://dereksbucket1002/testfolder/111122223333-KP-69aa080c00fc68934a6a98f10EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testrole" } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeKeyPhrasesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-pii-entities-detection-job.
- AWS CLI
-
Pour décrire une tâche de détection d'entités PII
L'
describe-pii-entities-detection-jobexemple suivant obtient les propriétés d'une tâche de détection d'entités pii asynchrones.aws comprehend describe-pii-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "PiiEntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-pii-entities-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribePiiEntitiesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-resource-policy.
- AWS CLI
-
Pour décrire une politique de ressources associée à un modèle
L'
describe-resource-policyexemple suivant obtient les propriétés d'une politique basée sur les ressources attachée à un modèle.aws comprehend describe-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1Sortie :
{ "ResourcePolicy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":\"arn:aws:iam::444455556666:root\"},\"Action\":\"comprehend:ImportModel\",\"Resource\":\"*\"}]}", "CreationTime": "2023-06-19T18:44:26.028000+00:00", "LastModifiedTime": "2023-06-19T18:53:02.002000+00:00", "PolicyRevisionId": "baa675d069d07afaa2aa3106ae280f61" }Pour plus d'informations, consultez Copier des modèles personnalisés entre AWS comptes dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeResourcePolicy
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-sentiment-detection-job.
- AWS CLI
-
Pour décrire une tâche de détection des sentiments
L'
describe-sentiment-detection-jobexemple suivant permet d'obtenir les propriétés d'une tâche de détection de sentiments asynchrone.aws comprehend describe-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "SentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeSentimentDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-targeted-sentiment-detection-job.
- AWS CLI
-
Pour décrire une tâche de détection ciblée des sentiments
L'
describe-targeted-sentiment-detection-jobexemple suivant permet d'obtenir les propriétés d'une tâche de détection ciblée asynchrone des sentiments.aws comprehend describe-targeted-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "TargetedSentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeTargetedSentimentDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdescribe-topics-detection-job.
- AWS CLI
-
Pour décrire une tâche de détection de sujets
L'
describe-topics-detection-jobexemple suivant obtient les propriétés d'une tâche de détection de sujets asynchrones.aws comprehend describe-topics-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "TopicsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example_topics_detection", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-examplerole" } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DescribeTopicsDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdetect-dominant-language.
- AWS CLI
-
Pour détecter la langue dominante du texte saisi
Ce qui suit
detect-dominant-languageanalyse le texte saisi et identifie la langue dominante. Le score de confiance du modèle préentraîné est également affiché.aws comprehend detect-dominant-language \ --text"It is a beautiful day in Seattle."Sortie :
{ "Languages": [ { "LanguageCode": "en", "Score": 0.9877256155014038 } ] }Pour plus d'informations, consultez Dominant Language dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DetectDominantLanguage
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdetect-entities.
- AWS CLI
-
Pour détecter les entités nommées dans le texte saisi
L'
detect-entitiesexemple suivant analyse le texte saisi et renvoie les entités nommées. Le score de confiance du modèle préentraîné est également généré pour chaque prédiction.aws comprehend detect-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Sortie :
{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }Pour plus d'informations, consultez Entities dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DetectEntities
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdetect-key-phrases.
- AWS CLI
-
Pour détecter les phrases clés dans le texte saisi
L'
detect-key-phrasesexemple suivant analyse le texte saisi et identifie les phrases nominales clés. Le score de confiance du modèle préentraîné est également généré pour chaque prédiction.aws comprehend detect-key-phrases \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Sortie :
{ "KeyPhrases": [ { "Score": 0.8996376395225525, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9992469549179077, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.988385021686554, "Text": "Your AnyCompany Financial Services", "BeginOffset": 28, "EndOffset": 62 }, { "Score": 0.8740853071212769, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 64, "EndOffset": 107 }, { "Score": 0.9999437928199768, "Text": "a minimum payment", "BeginOffset": 112, "EndOffset": 129 }, { "Score": 0.9998900890350342, "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9979453086853027, "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9983011484146118, "Text": "your autopay settings", "BeginOffset": 172, "EndOffset": 193 }, { "Score": 0.9996572136878967, "Text": "your payment", "BeginOffset": 211, "EndOffset": 223 }, { "Score": 0.9995037317276001, "Text": "the due date", "BeginOffset": 227, "EndOffset": 239 }, { "Score": 0.9702621698379517, "Text": "your bank account number XXXXXX1111", "BeginOffset": 245, "EndOffset": 280 }, { "Score": 0.9179925918579102, "Text": "the routing number XXXXX0000.Customer feedback", "BeginOffset": 286, "EndOffset": 332 }, { "Score": 0.9978160858154297, "Text": "Sunshine Spa", "BeginOffset": 337, "EndOffset": 349 }, { "Score": 0.9706913232803345, "Text": "123 Main St", "BeginOffset": 351, "EndOffset": 362 }, { "Score": 0.9941995143890381, "Text": "comments", "BeginOffset": 379, "EndOffset": 387 }, { "Score": 0.9759287238121033, "Text": "Alice", "BeginOffset": 391, "EndOffset": 396 }, { "Score": 0.8376792669296265, "Text": "AnySpa@example.com", "BeginOffset": 400, "EndOffset": 415 } ] }Pour plus d'informations, consultez les phrases clés du manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DetectKeyPhrases
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdetect-pii-entities.
- AWS CLI
-
Pour détecter les entités pii dans le texte saisi
L'
detect-pii-entitiesexemple suivant analyse le texte saisi et identifie les entités contenant des informations personnelles identifiables (PII). Le score de confiance du modèle préentraîné est également généré pour chaque prédiction.aws comprehend detect-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Sortie :
{ "Entities": [ { "Score": 0.9998322129249573, "Type": "NAME", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9998878240585327, "Type": "NAME", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9994089603424072, "Type": "CREDIT_DEBIT_NUMBER", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9999760985374451, "Type": "DATE_TIME", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9999449253082275, "Type": "BANK_ACCOUNT_NUMBER", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9999847412109375, "Type": "BANK_ROUTING", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.999925434589386, "Type": "ADDRESS", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.9989161491394043, "Type": "NAME", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9994171857833862, "Type": "EMAIL", "BeginOffset": 403, "EndOffset": 418 } ] }Pour plus d'informations, consultez la section Informations personnelles identifiables (PII) dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DetectPiiEntities
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdetect-sentiment.
- AWS CLI
-
Pour détecter le sentiment d'un texte saisi
L'
detect-sentimentexemple suivant analyse le texte saisi et renvoie une inférence du sentiment dominant (POSITIVE,NEUTRALMIXED, ouNEGATIVE).aws comprehend detect-sentiment \ --language-code en \ --text"It is a beautiful day in Seattle"Sortie :
{ "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9976957440376282, "Negative": 9.653854067437351e-05, "Neutral": 0.002169104292988777, "Mixed": 3.857641786453314e-05 } }Pour plus d'informations, consultez Sentiment dans le guide du développeur Amazon Comprehend
-
Pour plus de détails sur l'API, reportez-vous DetectSentiment
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdetect-syntax.
- AWS CLI
-
Pour détecter les parties du discours dans un texte saisi
L'
detect-syntaxexemple suivant analyse la syntaxe du texte saisi et renvoie les différentes parties du discours. Le score de confiance du modèle préentraîné est également généré pour chaque prédiction.aws comprehend detect-syntax \ --language-code en \ --text"It is a beautiful day in Seattle."Sortie :
{ "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999901294708252 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999938607215881 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987351894378662 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999796748161316 } }, { "TokenId": 6, "Text": "in", "BeginOffset": 22, "EndOffset": 24, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9998047947883606 } }, { "TokenId": 7, "Text": "Seattle", "BeginOffset": 25, "EndOffset": 32, "PartOfSpeech": { "Tag": "PROPN", "Score": 0.9940530061721802 } } ] }Pour plus d'informations, consultez la section Analyse syntaxique dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DetectSyntax
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserdetect-targeted-sentiment.
- AWS CLI
-
Pour détecter le sentiment ciblé des entités nommées dans un texte saisi
L'
detect-targeted-sentimentexemple suivant analyse le texte saisi et renvoie les entités nommées en plus du sentiment ciblé associé à chaque entité. Le score de confiance des modèles préentraînés pour chaque prédiction est également généré.aws comprehend detect-targeted-sentiment \ --language-code en \ --text"I do not enjoy January because it is too cold but August is the perfect temperature"Sortie :
{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999979734420776, "GroupScore": 1.0, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 1 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9638869762420654, "GroupScore": 1.0, "Text": "January", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.0031610000878572464, "Negative": 0.9967250227928162, "Neutral": 0.00011100000119768083, "Mixed": 1.9999999949504854e-06 } }, "BeginOffset": 15, "EndOffset": 22 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { { "Score": 0.9664419889450073, "GroupScore": 1.0, "Text": "August", "Type": "DATE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999549984931946, "Negative": 3.999999989900971e-06, "Neutral": 4.099999932805076e-05, "Mixed": 0.0 } }, "BeginOffset": 50, "EndOffset": 56 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9803199768066406, "GroupScore": 1.0, "Text": "temperature", "Type": "ATTRIBUTE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 77, "EndOffset": 88 } ] } ] }Pour plus d'informations, consultez Targeted Sentiment dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous DetectTargetedSentiment
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserimport-model.
- AWS CLI
-
Pour importer un modèle
L'
import-modelexemple suivant importe un modèle depuis un autre AWS compte. Le modèle de classificateur de documents en compte444455556666dispose d'une politique basée sur les ressources permettant111122223333au compte d'importer le modèle.aws comprehend import-model \ --source-model-arnarn:aws:comprehend:us-west-2:444455556666:document-classifier/example-classifierSortie :
{ "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }Pour plus d'informations, consultez Copier des modèles personnalisés entre AWS comptes dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ImportModel
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-datasets.
- AWS CLI
-
Pour répertorier tous les ensembles de données sur les volants
L'
list-datasetsexemple suivant répertorie tous les ensembles de données associés à un volant.aws comprehend list-datasets \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entitySortie :
{ "DatasetPropertiesList": [ { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-1", "DatasetName": "example-dataset-1", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-1/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" }, { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-2", "DatasetName": "example-dataset-2", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-2/20230616T200607Z/", "Description": "TRAIN Dataset created by Flywheel creation.", "Status": "COMPLETED", "NumberOfDocuments": 5572, "CreationTime": "2023-06-16T20:06:07.722000+00:00" } ] }Pour plus d'informations, consultez la présentation de Flywheel dans le guide du développeur Amazon Comprehend.
-
Pour plus de détails sur l'API, reportez-vous ListDatasets
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-document-classification-jobs.
- AWS CLI
-
Pour répertorier tous les travaux de classification de documents
L'
list-document-classification-jobsexemple suivant répertorie toutes les tâches de classification de documents.aws comprehend list-document-classification-jobsSortie :
{ "DocumentClassificationJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "exampleclassificationjob2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:22:39.829000+00:00", "EndTime": "2023-06-14T17:28:46.107000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" } ] }Pour plus d'informations, consultez la section Classification personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListDocumentClassificationJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-document-classifier-summaries.
- AWS CLI
-
Pour répertorier les résumés de tous les classificateurs de documents créés
L'
list-document-classifier-summariesexemple suivant répertorie tous les résumés des classificateurs de documents créés.aws comprehend list-document-classifier-summariesSortie :
{ "DocumentClassifierSummariesList": [ { "DocumentClassifierName": "example-classifier-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-13T22:07:59.825000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" }, { "DocumentClassifierName": "example-classifier-2", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-13T21:54:59.589000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "TRAINED" } ] }Pour plus d'informations, consultez la section Création et gestion de modèles personnalisés dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListDocumentClassifierSummaries
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-document-classifiers.
- AWS CLI
-
Pour afficher la liste de tous les classificateurs de documents
L'
list-document-classifiersexemple suivant répertorie tous les modèles de classificateur de documents entraînés et en cours de formation.aws comprehend list-document-classifiersSortie :
{ "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }Pour plus d'informations, consultez la section Création et gestion de modèles personnalisés dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListDocumentClassifiers
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-dominant-language-detection-jobs.
- AWS CLI
-
Pour répertorier tous les emplois de détection des langues dominantes
L'
list-dominant-language-detection-jobsexemple suivant répertorie toutes les tâches de détection du langage dominant asynchrone en cours et terminées.aws comprehend list-dominant-language-detection-jobsSortie :
{ "DominantLanguageDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "EndTime": "2023-06-09T18:18:45.498000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-09T18:16:33.690000+00:00", "EndTime": "2023-06-09T18:24:40.608000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListDominantLanguageDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-endpoints.
- AWS CLI
-
Vers la liste de tous les points de terminaison
L'
list-endpointsexemple suivant répertorie tous les points de terminaison spécifiques au modèle actif.aws comprehend list-endpointsSortie :
{ "EndpointPropertiesList": [ { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" }, { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint2", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } ] }Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListEndpoints
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-entities-detection-jobs.
- AWS CLI
-
Pour répertorier toutes les tâches de détection d'entités
L'
list-entities-detection-jobsexemple suivant répertorie toutes les tâches de détection d'entités asynchrones.aws comprehend list-entities-detection-jobsSortie :
{ "EntitiesDetectionJobPropertiesList": [ { "JobId": "468af39c28ab45b83eb0c4ab9EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/468af39c28ab45b83eb0c4ab9EXAMPLE", "JobName": "example-entities-detection", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T20:57:46.476000+00:00", "EndTime": "2023-06-08T21:05:53.718000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-468af39c28ab45b83eb0c4ab9EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "809691caeaab0e71406f80a28EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/809691caeaab0e71406f80a28EXAMPLE", "JobName": "example-entities-detection-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-809691caeaab0e71406f80a28EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "e00597c36b448b91d70dea165EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/e00597c36b448b91d70dea165EXAMPLE", "JobName": "example-entities-detection-3", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:19:28.528000+00:00", "EndTime": "2023-06-08T22:27:33.991000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-e00597c36b448b91d70dea165EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }Pour plus d'informations, consultez Entities dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListEntitiesDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-entity-recognizer-summaries.
- AWS CLI
-
Vers la liste des résumés de tous les outils de reconnaissance d'entités créés
L'
list-entity-recognizer-summariesexemple suivant répertorie tous les résumés des outils de reconnaissance d'entités.aws comprehend list-entity-recognizer-summariesSortie :
{ "EntityRecognizerSummariesList": [ { "RecognizerName": "entity-recognizer-3", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-15T23:15:07.621000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "STOP_REQUESTED" }, { "RecognizerName": "entity-recognizer-2", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T22:55:27.805000+00:00", "LatestVersionName": "2" "LatestVersionStatus": "TRAINED" }, { "RecognizerName": "entity-recognizer-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T20:44:59.631000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" } ] }Pour plus d'informations, consultez la section Reconnaissance d'entités personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListEntityRecognizerSummaries
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-entity-recognizers.
- AWS CLI
-
Pour répertorier tous les outils de reconnaissance d'entités personnalisés
L'
list-entity-recognizersexemple suivant répertorie tous les outils de reconnaissance d'entités personnalisés créés.aws comprehend list-entity-recognizersSortie :
{ "EntityRecognizerPropertiesList": [ { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/EntityRecognizer/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole", "VersionName": "1" }, { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer3", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T22:57:51.056000+00:00", "EndTime": "2023-06-14T23:14:13.894000+00:00", "TrainingStartTime": "2023-06-14T23:01:33.984000+00:00", "TrainingEndTime": "2023-06-14T23:13:02.984000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "DEVICE" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/raw_txt.csv", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 4616, "NumberOfTestDocuments": 3489, "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "EntityTypes": [ { "Type": "DEVICE", "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "NumberOfTrainMentions": 2764 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } ] }Pour plus d'informations, consultez la section Reconnaissance d'entités personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListEntityRecognizers
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-events-detection-jobs.
- AWS CLI
-
Pour répertorier toutes les tâches de détection d'événements
L'
list-events-detection-jobsexemple suivant répertorie toutes les tâches de détection d'événements asynchrones.aws comprehend list-events-detection-jobsSortie :
{ "EventsDetectionJobPropertiesList": [ { "JobId": "aa9593f9203e84f3ef032ce18EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/aa9593f9203e84f3ef032ce18EXAMPLE", "JobName": "events_job_1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:14:57.751000+00:00", "EndTime": "2023-06-12T19:21:04.962000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-aa9593f9203e84f3ef032ce18EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] }, { "JobId": "4a990a2f7e82adfca6e171135EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/4a990a2f7e82adfca6e171135EXAMPLE", "JobName": "events_job_2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:55:43.702000+00:00", "EndTime": "2023-06-12T20:03:49.893000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-4a990a2f7e82adfca6e171135EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } ] }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListEventsDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-flywheel-iteration-history.
- AWS CLI
-
Pour répertorier l'historique de toutes les itérations du volant
L'
list-flywheel-iteration-historyexemple suivant répertorie toutes les itérations d'un volant.aws comprehend list-flywheel-iteration-history --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheelSortie :
{ "FlywheelIterationPropertiesList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "20230619TEXAMPLE", "CreationTime": "2023-06-19T04:00:32.594000+00:00", "EndTime": "2023-06-19T04:00:49.248000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9876464664646313, "AveragePrecision": 0.9800000253081214, "AverageRecall": 0.9445600253081214, "AverageAccuracy": 0.9997281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230619TEXAMPLE/evaluation/20230619TEXAMPLE/" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "FlywheelIterationId": "20230616TEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/spamvshamclassify/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20230616TEXAMPLE/evaluation/20230616TEXAMPLE/" } ] }Pour plus d'informations, consultez la présentation de Flywheel dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListFlywheelIterationHistory
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-flywheels.
- AWS CLI
-
Pour répertorier tous les volants
L'
list-flywheelsexemple suivant répertorie tous les volants créés.aws comprehend list-flywheelsSortie :
{ "FlywheelSummaryList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-1/schemaVersion=1/20230616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20220616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2022-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2022-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20220619T040032Z" } ] }Pour plus d'informations, consultez la présentation de Flywheel dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListFlywheels
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-key-phrases-detection-jobs.
- AWS CLI
-
Pour répertorier toutes les tâches de détection de phrases clés
L'
list-key-phrases-detection-jobsexemple suivant répertorie toutes les tâches de détection de phrases clés asynchrones en cours et terminées.aws comprehend list-key-phrases-detection-jobsSortie :
{ "KeyPhrasesDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "keyphrasesanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T22:31:43.767000+00:00", "EndTime": "2023-06-08T22:39:52.565000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a33EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a33EXAMPLE", "JobName": "keyphrasesanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:57:52.154000+00:00", "EndTime": "2023-06-08T23:05:48.385000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a33EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a44EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a44EXAMPLE", "JobName": "keyphrasesanalysis3", "JobStatus": "FAILED", "Message": "NO_READ_ACCESS_TO_INPUT: The provided data access role does not have proper access to the input data.", "SubmitTime": "2023-06-09T16:47:04.029000+00:00", "EndTime": "2023-06-09T16:47:18.413000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a44EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListKeyPhrasesDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-pii-entities-detection-jobs.
- AWS CLI
-
Pour répertorier toutes les tâches de détection d'entités pii
L'
list-pii-entities-detection-jobsexemple suivant répertorie toutes les tâches de détection d'informations personnelles asynchrones en cours et terminées.aws comprehend list-pii-entities-detection-jobsSortie :
{ "PiiEntitiesDetectionJobPropertiesList": [ { "JobId": "6f9db0c42d0c810e814670ee4EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/6f9db0c42d0c810e814670ee4EXAMPLE", "JobName": "example-pii-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:02:46.241000+00:00", "EndTime": "2023-06-09T21:12:52.602000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/111122223333-PII-6f9db0c42d0c810e814670ee4EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" }, { "JobId": "d927562638cfa739331a99b3cEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/d927562638cfa739331a99b3cEXAMPLE", "JobName": "example-pii-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:20:58.211000+00:00", "EndTime": "2023-06-09T21:31:06.027000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-PII-d927562638cfa739331a99b3cEXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" } ] }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListPiiEntitiesDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-sentiment-detection-jobs.
- AWS CLI
-
Pour répertorier tous les emplois liés à la détection des sentiments
L'
list-sentiment-detection-jobsexemple suivant répertorie toutes les tâches asynchrones de détection des sentiments en cours et terminées.aws comprehend list-sentiment-detection-jobsSortie :
{ "SentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-sentiment-detection-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListSentimentDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-tags-for-resource.
- AWS CLI
-
Pour répertorier les balises d'une ressource
L'
list-tags-for-resourceexemple suivant répertorie les balises d'une ressource Amazon Comprehend.aws comprehend list-tags-for-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1Sortie :
{ "ResourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "Tags": [ { "Key": "Department", "Value": "Finance" }, { "Key": "location", "Value": "Seattle" } ] }Pour plus d'informations, consultez la section Marquage de vos ressources dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListTagsForResource
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-targeted-sentiment-detection-jobs.
- AWS CLI
-
Pour répertorier toutes les tâches de détection de sentiments ciblées
L'
list-targeted-sentiment-detection-jobsexemple suivant répertorie toutes les tâches de détection ciblée asynchrone des sentiments en cours et terminées.aws comprehend list-targeted-sentiment-detection-jobsSortie :
{ "TargetedSentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-targeted-sentiment-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-targeted-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListTargetedSentimentDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserlist-topics-detection-jobs.
- AWS CLI
-
Pour répertorier toutes les tâches de détection de sujets
L'
list-topics-detection-jobsexemple suivant répertorie toutes les tâches de détection de sujets asynchrones en cours et terminées.aws comprehend list-topics-detection-jobsSortie :
{ "TopicsDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName" "topic-analysis-1" "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:40:35.384000+00:00", "EndTime": "2023-06-09T18:46:41.936000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "topic-analysis-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "EndTime": "2023-06-09T18:50:50.872000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE3", "JobName": "topic-analysis-2", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:50:56.737000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous ListTopicsDetectionJobs
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserput-resource-policy.
- AWS CLI
-
Pour associer une politique basée sur les ressources
L'
put-resource-policyexemple suivant associe une politique basée sur les ressources à un modèle afin qu'il puisse être importé par un autre AWS compte. La politique est attachée au modèle dans le compte111122223333et permet d'444455556666importer le modèle dans le compte.aws comprehend put-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1\ --resource-policy '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Action":"comprehend:ImportModel","Resource":"*","Principal":{"AWS":["arn:aws:iam::444455556666:root"]}}]}'Sortie :
{ "PolicyRevisionId": "aaa111d069d07afaa2aa3106aEXAMPLE" }Pour plus d'informations, consultez Copier des modèles personnalisés entre AWS comptes dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous PutResourcePolicy
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-document-classification-job.
- AWS CLI
-
Pour démarrer une tâche de classification de documents
L'
start-document-classification-jobexemple suivant démarre une tâche de classification de documents avec un modèle personnalisé sur tous les fichiers à l'adresse spécifiée par la--input-data-configbalise. Dans cet exemple, le compartiment S3 d'entrée contientSampleSMStext1.txtSampleSMStext2.txt, etSampleSMStext3.txt. Le modèle avait déjà été formé à la classification des documents contenant du spam et des messages non indésirables, ou « spam », des messages SMS. Lorsque le travail est terminé,output.tar.gzil est placé à l'emplacement spécifié par la--output-data-configbalise.output.tar.gzpredictions.jsonlcontient la liste de classification de chaque document. La sortie Json est imprimée sur une ligne par fichier, mais elle est formatée ici pour des raisons de lisibilité.aws comprehend start-document-classification-job \ --job-nameexampleclassificationjob\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket-INPUT/jobdata/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/12Contenu de
SampleSMStext1.txt:"CONGRATULATIONS! TXT 2155550100 to win $5000"Contenu de
SampleSMStext2.txt:"Hi, when do you want me to pick you up from practice?"Contenu de
SampleSMStext3.txt:"Plz send bank account # to 2155550100 to claim prize!!"Sortie :
{ "JobId": "e758dd56b824aa717ceab551fEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/e758dd56b824aa717ceab551fEXAMPLE", "JobStatus": "SUBMITTED" }Contenu de
predictions.jsonl:{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]} {"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score": 0.9994}, {"Name": "spam", "Score": 0.0006}]} {"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]}Pour plus d'informations, consultez la section Classification personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartDocumentClassificationJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-dominant-language-detection-job.
- AWS CLI
-
Pour démarrer une tâche de détection de langue asynchrone
L'
start-dominant-language-detection-jobexemple suivant lance une tâche de détection de langue asynchrone pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Dans cet exemple, le compartiment S3 contientSampletext1.txt. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--output-data-configbalise.outputLe dossieroutput.txtcontient la langue dominante de chacun des fichiers texte ainsi que le score de confiance du modèle pré-entraîné pour chaque prédiction.aws comprehend start-dominant-language-detection-job \ --job-nameexample_language_analysis_job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenContenu du fichier Sampletext1.txt :
"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."Sortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contenu de
output.txt:{"File": "Sampletext1.txt", "Languages": [{"LanguageCode": "en", "Score": 0.9913753867149353}], "Line": 0}Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartDominantLanguageDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-entities-detection-job.
- AWS CLI
-
Exemple 1 : pour démarrer une tâche de détection d'entités standard à l'aide du modèle préentraîné
L'
start-entities-detection-jobexemple suivant lance une tâche de détection d'entités asynchrones pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Dans cet exemple, le compartiment S3 contientSampletext1.txtSampletext2.txt, etSampletext3.txt. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--output-data-configbalise.outputLe dossieroutput.txtcontient la liste de toutes les entités nommées détectées dans chaque fichier texte ainsi que le score de confiance du modèle pré-entraîné pour chaque prédiction. La sortie Json est imprimée sur une ligne par fichier d'entrée, mais elle est formatée ici pour des raisons de lisibilité.aws comprehend start-entities-detection-job \ --job-nameentitiestest\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenContenu de
Sampletext1.txt:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Contenu de
Sampletext2.txt:"Dear Max, based on your autopay settings for your account example1.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Contenu de
Sampletext3.txt:"Jane, please submit any customer feedback from this weekend to AnySpa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."Sortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contenu
output.txtavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9994006636420306, "Text": "Zhang Wei", "Type": "PERSON" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9976647915128143, "Text": "John", "Type": "PERSON" }, { "BeginOffset": 33, "EndOffset": 67, "Score": 0.9984608700836206, "Text": "AnyCompany Financial Services, LLC", "Type": "ORGANIZATION" }, { "BeginOffset": 88, "EndOffset": 107, "Score": 0.9868521019555556, "Text": "1111-XXXX-1111-XXXX", "Type": "OTHER" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.998242565709204, "Text": "$24.53", "Type": "QUANTITY" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9993039263159287, "Text": "July 31st", "Type": "DATE" } ], "File": "SampleText1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Score": 0.9866232147545232, "Text": "Max", "Type": "PERSON" }, { "BeginOffset": 156, "EndOffset": 166, "Score": 0.9797723450933329, "Text": "XXXXXX1111", "Type": "OTHER" }, { "BeginOffset": 191, "EndOffset": 200, "Score": 0.9247838572396843, "Text": "XXXXX0000", "Type": "OTHER" } ], "File": "SampleText2.txt", "Line": 0 } { "Entities": [ { "Score": 0.9990532994270325, "Type": "PERSON", "Text": "Jane", "BeginOffset": 0, "EndOffset": 4 }, { "Score": 0.9519651532173157, "Type": "DATE", "Text": "this weekend", "BeginOffset": 47, "EndOffset": 59 }, { "Score": 0.5566426515579224, "Type": "ORGANIZATION", "Text": "AnySpa", "BeginOffset": 63, "EndOffset": 69 }, { "Score": 0.8059805631637573, "Type": "LOCATION", "Text": "123 Main St, Anywhere", "BeginOffset": 71, "EndOffset": 92 }, { "Score": 0.998830258846283, "Type": "PERSON", "Text": "Alice", "BeginOffset": 114, "EndOffset": 119 }, { "Score": 0.997818112373352, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 123, "EndOffset": 138 } ], "File": "SampleText3.txt", "Line": 0 }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
Exemple 2 : pour démarrer une tâche de détection d'entités personnalisée
L'
start-entities-detection-jobexemple suivant lance une tâche de détection d'entités personnalisées asynchrones pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Dans cet exemple, le compartiment S3 de cet exemple contientSampleFeedback1.txtSampleFeedback2.txt, etSampleFeedback3.txt. Le modèle de reconnaissance d'entités a été formé sur la base des commentaires du support client pour reconnaître les noms des appareils. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--output-data-configbalise.outputLe dossier contientoutput.txtla liste de toutes les entités nommées détectées dans chaque fichier texte ainsi que le score de confiance du modèle préentraîné pour chaque prédiction. La sortie Json est imprimée sur une ligne par fichier, mais elle est formatée ici pour des raisons de lisibilité.aws comprehend start-entities-detection-job \ --job-namecustomentitiestest\ --entity-recognizer-arn"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer"\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/jobdata/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole"Contenu de
SampleFeedback1.txt:"I've been on the AnyPhone app have had issues for 24 hours when trying to pay bill. Cannot make payment. Sigh. | Oh man! Lets get that app up and running. DM me, and we can get to work!"Contenu de
SampleFeedback2.txt:"Hi, I have a discrepancy with my new bill. Could we get it sorted out? A rep added stuff I didnt sign up for when I did my AnyPhone 10 upgrade. | We can absolutely get this sorted!"Contenu de
SampleFeedback3.txt:"Is the by 1 get 1 free AnySmartPhone promo still going on? | Hi Christian! It ended yesterday, send us a DM if you have any questions and we can take a look at your options!"Sortie :
{ "JobId": "019ea9edac758806850fa8a79ff83021", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/019ea9edac758806850fa8a79ff83021", "JobStatus": "SUBMITTED" }Contenu
output.txtavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "BeginOffset": 17, "EndOffset": 25, "Score": 0.9999728210205924, "Text": "AnyPhone", "Type": "DEVICE" } ], "File": "SampleFeedback1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 123, "EndOffset": 133, "Score": 0.9999892116761524, "Text": "AnyPhone 10", "Type": "DEVICE" } ], "File": "SampleFeedback2.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 23, "EndOffset": 35, "Score": 0.9999971389852362, "Text": "AnySmartPhone", "Type": "DEVICE" } ], "File": "SampleFeedback3.txt", "Line": 0 }Pour plus d'informations, consultez la section Reconnaissance d'entités personnalisée dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartEntitiesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-events-detection-job.
- AWS CLI
-
Pour démarrer une tâche de détection d'événements asynchrones
L'
start-events-detection-jobexemple suivant lance une tâche de détection d'événements asynchrones pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Les types d'événements cibles possibles incluentBANKRUPCTYEMPLOYMENTCORPORATE_ACQUISITION,,INVESTMENT_GENERAL,CORPORATE_MERGER,IPO,RIGHTS_ISSUE,SECONDARY_OFFERING,SHELF_OFFERING,TENDER_OFFERING, etSTOCK_SPLIT. Dans cet exemple, le compartiment S3 contientSampleText1.txtSampleText2.txt, etSampleText3.txt. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--output-data-configbalise.outputLe dossier contientSampleText1.txt.outSampleText2.txt.out, etSampleText3.txt.out. La sortie JSON est imprimée sur une ligne par fichier, mais elle est formatée ici pour des raisons de lisibilité.aws comprehend start-events-detection-job \ --job-nameevents-detection-1\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/EventsData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole\ --language-codeen\ --target-event-types"BANKRUPTCY""EMPLOYMENT""CORPORATE_ACQUISITION""CORPORATE_MERGER""INVESTMENT_GENERAL"Contenu de
SampleText1.txt:"Company AnyCompany grew by increasing sales and through acquisitions. After purchasing competing firms in 2020, AnyBusiness, a part of the AnyBusinessGroup, gave Jane Does firm a going rate of one cent a gallon or forty-two cents a barrel."Contenu de
SampleText2.txt:"In 2021, AnyCompany officially purchased AnyBusiness for 100 billion dollars, surprising and exciting the shareholders."Contenu de
SampleText3.txt:"In 2022, AnyCompany stock crashed 50. Eventually later that year they filed for bankruptcy."Sortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contenu
SampleText1.txt.outavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "Mentions": [ { "BeginOffset": 8, "EndOffset": 18, "Score": 0.99977, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 112, "EndOffset": 123, "Score": 0.999747, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 0.979826 }, { "BeginOffset": 171, "EndOffset": 175, "Score": 0.999615, "Text": "firm", "Type": "ORGANIZATION", "GroupScore": 0.871647 } ] }, { "Mentions": [ { "BeginOffset": 97, "EndOffset": 102, "Score": 0.987687, "Text": "firms", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 103, "EndOffset": 110, "Score": 0.999458, "Text": "in 2020", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 160, "EndOffset": 168, "Score": 0.999649, "Text": "John Doe", "Type": "PERSON", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 0, "Role": "INVESTOR", "Score": 0.99977 } ], "Triggers": [ { "BeginOffset": 56, "EndOffset": 68, "Score": 0.999967, "Text": "acquisitions", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] }, { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 1, "Role": "INVESTEE", "Score": 0.987687 }, { "EntityIndex": 2, "Role": "DATE", "Score": 0.999458 }, { "EntityIndex": 3, "Role": "INVESTOR", "Score": 0.999649 } ], "Triggers": [ { "BeginOffset": 76, "EndOffset": 86, "Score": 0.999973, "Text": "purchasing", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText1.txt", "Line": 0 }Contenu de
SampleText2.txt.out:{ "Entities": [ { "Mentions": [ { "BeginOffset": 0, "EndOffset": 7, "Score": 0.999473, "Text": "In 2021", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999636, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 45, "EndOffset": 56, "Score": 0.999712, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 61, "EndOffset": 80, "Score": 0.998886, "Text": "100 billion dollars", "Type": "MONETARY_VALUE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 3, "Role": "AMOUNT", "Score": 0.998886 }, { "EntityIndex": 2, "Role": "INVESTEE", "Score": 0.999712 }, { "EntityIndex": 0, "Role": "DATE", "Score": 0.999473 }, { "EntityIndex": 1, "Role": "INVESTOR", "Score": 0.999636 } ], "Triggers": [ { "BeginOffset": 31, "EndOffset": 40, "Score": 0.99995, "Text": "purchased", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText2.txt", "Line": 0 }Contenu de
SampleText3.txt.out:{ "Entities": [ { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999774, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 66, "EndOffset": 70, "Score": 0.995717, "Text": "they", "Type": "ORGANIZATION", "GroupScore": 0.997626 } ] }, { "Mentions": [ { "BeginOffset": 50, "EndOffset": 65, "Score": 0.999656, "Text": "later that year", "Type": "DATE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "BANKRUPTCY", "Arguments": [ { "EntityIndex": 1, "Role": "DATE", "Score": 0.999656 }, { "EntityIndex": 0, "Role": "FILER", "Score": 0.995717 } ], "Triggers": [ { "BeginOffset": 81, "EndOffset": 91, "Score": 0.999936, "Text": "bankruptcy", "Type": "BANKRUPTCY", "GroupScore": 1 } ] } ], "File": "SampleText3.txt", "Line": 0 }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartEventsDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-flywheel-iteration.
- AWS CLI
-
Pour démarrer une itération en volant
L'
start-flywheel-iterationexemple suivant lance une itération au volant. Cette opération utilise tous les nouveaux ensembles de données présents dans le volant pour entraîner une nouvelle version du modèle.aws comprehend start-flywheel-iteration \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheelSortie :
{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "12345123TEXAMPLE" }Pour plus d'informations, consultez la présentation de Flywheel dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartFlywheelIteration
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-key-phrases-detection-job.
- AWS CLI
-
Pour démarrer une tâche de détection de phrases clés
L'
start-key-phrases-detection-jobexemple suivant lance une tâche de détection de phrases clés asynchrones pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Dans cet exemple, le compartiment S3 contientSampletext1.txtSampletext2.txt, etSampletext3.txt. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--output-data-configbalise.outputLe dossier contient le fichieroutput.txtqui contient toutes les phrases clés détectées dans chaque fichier texte et le score de confiance du modèle préentraîné pour chaque prédiction. La sortie Json est imprimée sur une ligne par fichier, mais elle est formatée ici pour des raisons de lisibilité.aws comprehend start-key-phrases-detection-job \ --job-namekeyphrasesanalysistest1\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role"\ --language-codeenContenu de
Sampletext1.txt:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Contenu de
Sampletext2.txt:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Contenu de
Sampletext3.txt:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."Sortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contenu
output.txtavec des retraits de ligne pour plus de lisibilité :{ "File": "SampleText1.txt", "KeyPhrases": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9748965572679326, "Text": "Zhang Wei" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9997344722354619, "Text": "John" }, { "BeginOffset": 28, "EndOffset": 62, "Score": 0.9843791074032948, "Text": "Your AnyCompany Financial Services" }, { "BeginOffset": 64, "EndOffset": 107, "Score": 0.8976122401721824, "Text": "LLC credit card account 1111-XXXX-1111-XXXX" }, { "BeginOffset": 112, "EndOffset": 129, "Score": 0.9999612982629748, "Text": "a minimum payment" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.99975728947036, "Text": "$24.53" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9940866241449973, "Text": "July 31st" } ], "Line": 0 } { "File": "SampleText2.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.9974021100118472, "Text": "Dear Max" }, { "BeginOffset": 19, "EndOffset": 40, "Score": 0.9961120519515884, "Text": "your autopay settings" }, { "BeginOffset": 45, "EndOffset": 78, "Score": 0.9980620070116009, "Text": "your account Internet.org account" }, { "BeginOffset": 97, "EndOffset": 109, "Score": 0.999919660140754, "Text": "your payment" }, { "BeginOffset": 113, "EndOffset": 125, "Score": 0.9998370719754205, "Text": "the due date" }, { "BeginOffset": 131, "EndOffset": 166, "Score": 0.9955068678502509, "Text": "your bank account number XXXXXX1111" }, { "BeginOffset": 172, "EndOffset": 200, "Score": 0.8653433315829526, "Text": "the routing number XXXXX0000" } ], "Line": 0 } { "File": "SampleText3.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 4, "Score": 0.9142947833681668, "Text": "Jane" }, { "BeginOffset": 20, "EndOffset": 41, "Score": 0.9984325676596763, "Text": "any customer feedback" }, { "BeginOffset": 47, "EndOffset": 59, "Score": 0.9998782448150636, "Text": "this weekend" }, { "BeginOffset": 63, "EndOffset": 75, "Score": 0.99866741830757, "Text": "Sunshine Spa" }, { "BeginOffset": 77, "EndOffset": 88, "Score": 0.9695803485466054, "Text": "123 Main St" }, { "BeginOffset": 108, "EndOffset": 116, "Score": 0.9997065928550928, "Text": "comments" }, { "BeginOffset": 120, "EndOffset": 125, "Score": 0.9993466833825161, "Text": "Alice" }, { "BeginOffset": 129, "EndOffset": 144, "Score": 0.9654563612885667, "Text": "AnySpa@example.com" } ], "Line": 0 }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartKeyPhrasesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-pii-entities-detection-job.
- AWS CLI
-
Pour démarrer une tâche de détection d'informations personnelles asynchrone
L'
start-pii-entities-detection-jobexemple suivant lance une tâche de détection d'entités d'informations personnelles identifiables (PII) asynchrones pour tous les fichiers situés à l'adresse spécifiée par la balise.--input-data-configDans cet exemple, le compartiment S3 contientSampletext1.txtSampletext2.txt, etSampletext3.txt. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--output-data-configbalise.outputLe dossier contientSampleText1.txt.outSampleText2.txt.out, etSampleText3.txt.outqui répertorient les entités nommées dans chaque fichier texte. La sortie Json est imprimée sur une ligne par fichier, mais elle est formatée ici pour des raisons de lisibilité.aws comprehend start-pii-entities-detection-job \ --job-nameentities_test\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeen\ --modeONLY_OFFSETSContenu de
Sampletext1.txt:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Contenu de
Sampletext2.txt:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Contenu de
Sampletext3.txt:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."Sortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contenu
SampleText1.txt.outavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Type": "NAME", "Score": 0.9998490510222595 }, { "BeginOffset": 22, "EndOffset": 26, "Type": "NAME", "Score": 0.9998937958019426 }, { "BeginOffset": 88, "EndOffset": 107, "Type": "CREDIT_DEBIT_NUMBER", "Score": 0.9554297245278491 }, { "BeginOffset": 155, "EndOffset": 164, "Type": "DATE_TIME", "Score": 0.9999720462925257 } ], "File": "SampleText1.txt", "Line": 0 }Contenu
SampleText2.txt.outavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Type": "NAME", "Score": 0.9994390774924007 }, { "BeginOffset": 58, "EndOffset": 70, "Type": "URL", "Score": 0.9999958276922101 }, { "BeginOffset": 156, "EndOffset": 166, "Type": "BANK_ACCOUNT_NUMBER", "Score": 0.9999721058045592 }, { "BeginOffset": 191, "EndOffset": 200, "Type": "BANK_ROUTING", "Score": 0.9998968945989909 } ], "File": "SampleText2.txt", "Line": 0 }Contenu
SampleText3.txt.outavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "BeginOffset": 0, "EndOffset": 4, "Type": "NAME", "Score": 0.999949934606805 }, { "BeginOffset": 77, "EndOffset": 88, "Type": "ADDRESS", "Score": 0.9999035300466904 }, { "BeginOffset": 120, "EndOffset": 125, "Type": "NAME", "Score": 0.9998203838716296 }, { "BeginOffset": 129, "EndOffset": 144, "Type": "EMAIL", "Score": 0.9998313473105228 } ], "File": "SampleText3.txt", "Line": 0 }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartPiiEntitiesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-sentiment-detection-job.
- AWS CLI
-
Pour démarrer une tâche d'analyse des sentiments asynchrone
L'
start-sentiment-detection-jobexemple suivant lance une tâche de détection d'analyse asynchrone des sentiments pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Dans cet exemple, le dossier du compartiment S3 contientSampleMovieReview1.txtSampleMovieReview2.txt, etSampleMovieReview3.txt. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--output-data-configbalise.outputLe dossier contient le fichieroutput.txt, qui contient les sentiments dominants pour chaque fichier texte et le score de confiance du modèle préentraîné pour chaque prédiction. La sortie Json est imprimée sur une ligne par fichier, mais elle est formatée ici pour des raisons de lisibilité.aws comprehend start-sentiment-detection-job \ --job-nameexample-sentiment-detection-job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/MovieData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-roleContenu de
SampleMovieReview1.txt:"The film, AnyMovie2, is fairly predictable and just okay."Contenu de
SampleMovieReview2.txt:"AnyMovie2 is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."Contenu de
SampleMovieReview3.txt:"Don't get fooled by the 'awards' for AnyMovie2. All parts of the film were poorly stolen from other modern directors."Sortie :
{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }Contenu de
output.txtavec ligne de retraits pour plus de lisibilité :{ "File": "SampleMovieReview1.txt", "Line": 0, "Sentiment": "MIXED", "SentimentScore": { "Mixed": 0.6591159105300903, "Negative": 0.26492202281951904, "Neutral": 0.035430654883384705, "Positive": 0.04053137078881264 } } { "File": "SampleMovieReview2.txt", "Line": 0, "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000008718466233403888, "Negative": 0.00006134175055194646, "Neutral": 0.0002941041602753103, "Positive": 0.9996358156204224 } } { "File": "SampleMovieReview3.txt", "Line": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Mixed": 0.004146667663007975, "Negative": 0.9645107984542847, "Neutral": 0.016559595242142677, "Positive": 0.014782938174903393 } } }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartSentimentDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-targeted-sentiment-detection-job.
- AWS CLI
-
Pour démarrer une tâche d'analyse ciblée asynchrone des sentiments
L'
start-targeted-sentiment-detection-jobexemple suivant lance une tâche de détection d'analyse ciblée asynchrone des sentiments pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Dans cet exemple, le dossier du compartiment S3 contientSampleMovieReview1.txtSampleMovieReview2.txt, etSampleMovieReview3.txt. Lorsque le travail est terminé,output.tar.gzil est placé à l'emplacement spécifié par le--output-data-configtag.output.tar.gzcontient les fichiersSampleMovieReview1.txt.out,SampleMovieReview2.txt.out, etSampleMovieReview3.txt.out, qui contiennent chacun toutes les entités nommées et les sentiments associés pour un seul fichier texte d'entrée.aws comprehend start-targeted-sentiment-detection-job \ --job-nametargeted_movie_review_analysis1\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/MovieData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-roleContenu de
SampleMovieReview1.txt:"The film, AnyMovie, is fairly predictable and just okay."Contenu de
SampleMovieReview2.txt:"AnyMovie is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."Contenu de
SampleMovieReview3.txt:"Don't get fooled by the 'awards' for AnyMovie. All parts of the film were poorly stolen from other modern directors."Sortie :
{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }Contenu
SampleMovieReview1.txt.outavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 4, "EndOffset": 8, "Score": 0.994972, "GroupScore": 1, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 10, "EndOffset": 18, "Score": 0.631368, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.001729, "Negative": 0.000001, "Neutral": 0.000318, "Positive": 0.997952 } } } ] } ], "File": "SampleMovieReview1.txt", "Line": 0 }Contenu des retraits de
SampleMovieReview2.txt.outligne pour plus de lisibilité :{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.854024, "GroupScore": 1, "Text": "AnyMovie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000007, "Positive": 0.999993 } } }, { "BeginOffset": 104, "EndOffset": 109, "Score": 0.999129, "GroupScore": 0.502937, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0, "Positive": 1 } } }, { "BeginOffset": 33, "EndOffset": 37, "Score": 0.999823, "GroupScore": 0.999252, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000001, "Positive": 0.999999 } } } ] }, { "DescriptiveMentionIndex": [ 0, 1, 2 ], "Mentions": [ { "BeginOffset": 43, "EndOffset": 44, "Score": 0.999997, "GroupScore": 1, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 80, "EndOffset": 81, "Score": 0.999996, "GroupScore": 0.52523, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 67, "EndOffset": 68, "Score": 0.999994, "GroupScore": 0.999499, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 75, "EndOffset": 78, "Score": 0.999978, "GroupScore": 1, "Text": "kid", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview2.txt", "Line": 0 }Contenu
SampleMovieReview3.txt.outavec des retraits de ligne pour plus de lisibilité :{ "Entities": [ { "DescriptiveMentionIndex": [ 1 ], "Mentions": [ { "BeginOffset": 64, "EndOffset": 68, "Score": 0.992953, "GroupScore": 0.999814, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000004, "Negative": 0.010425, "Neutral": 0.989543, "Positive": 0.000027 } } }, { "BeginOffset": 37, "EndOffset": 45, "Score": 0.999782, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000095, "Negative": 0.039847, "Neutral": 0.000673, "Positive": 0.959384 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 47, "EndOffset": 50, "Score": 0.999991, "GroupScore": 1, "Text": "All", "Type": "QUANTITY", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000001, "Negative": 0.000001, "Neutral": 0.999998, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 106, "EndOffset": 115, "Score": 0.542083, "GroupScore": 1, "Text": "directors", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview3.txt", "Line": 0 }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartTargetedSentimentDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstart-topics-detection-job.
- AWS CLI
-
Pour démarrer une tâche d'analyse de détection de sujets
L'
start-topics-detection-jobexemple suivant lance une tâche de détection de sujets asynchrones pour tous les fichiers situés à l'adresse spécifiée par la--input-data-configbalise. Lorsque le travail est terminé, le dossier est placé à l'emplacement spécifié par la--ouput-data-configbalise.outputoutputcontient topic-terms.csv et doc-topics.csv. Le premier fichier de sortie, topic-terms.csv, est une liste des rubriques de la collection. Pour chaque sujet, la liste inclut, par défaut, les principaux termes par sujet en fonction de leur poids. Le second fichier répertoriedoc-topics.csvles documents associés à un sujet et la proportion du document qui traite du sujet.aws comprehend start-topics-detection-job \ --job-nameexample_topics_detection_job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenSortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Pour plus d'informations, consultez la section Modélisation des rubriques dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StartTopicsDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-dominant-language-detection-job.
- AWS CLI
-
Pour arrêter une tâche de détection de langue dominante asynchrone
L'
stop-dominant-language-detection-jobexemple suivant arrête une tâche de détection de langue dominante asynchrone en cours. Si l'état actuel du travail estIN_PROGRESSle suivant, le travail est marqué pour fin et placé dansSTOP_REQUESTEDcet état. Si la tâche se termine avant de pouvoir être arrêtée, elle est mise enCOMPLETEDétat.aws comprehend stop-dominant-language-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopDominantLanguageDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-entities-detection-job.
- AWS CLI
-
Pour arrêter une tâche de détection d'entités asynchrones
L'
stop-entities-detection-jobexemple suivant arrête une tâche de détection d'entités asynchrones en cours. Si l'état actuel du travail estIN_PROGRESSle suivant, le travail est marqué pour fin et placé dansSTOP_REQUESTEDcet état. Si la tâche se termine avant de pouvoir être arrêtée, elle est mise enCOMPLETEDétat.aws comprehend stop-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopEntitiesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-events-detection-job.
- AWS CLI
-
Pour arrêter une tâche de détection d'événements asynchrones
L'
stop-events-detection-jobexemple suivant arrête une tâche de détection d'événements asynchrones en cours. Si l'état actuel du travail estIN_PROGRESSle suivant, le travail est marqué pour fin et placé dansSTOP_REQUESTEDcet état. Si la tâche se termine avant de pouvoir être arrêtée, elle est mise enCOMPLETEDétat.aws comprehend stop-events-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopEventsDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-key-phrases-detection-job.
- AWS CLI
-
Pour arrêter une tâche de détection de phrases-clés asynchrones
L'
stop-key-phrases-detection-jobexemple suivant arrête une tâche de détection de phrases clés asynchrones en cours. Si l'état actuel du travail estIN_PROGRESSle suivant, le travail est marqué pour fin et placé dansSTOP_REQUESTEDcet état. Si la tâche se termine avant de pouvoir être arrêtée, elle est mise enCOMPLETEDétat.aws comprehend stop-key-phrases-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopKeyPhrasesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-pii-entities-detection-job.
- AWS CLI
-
Pour arrêter une tâche de détection d'entités pii asynchrones
L'
stop-pii-entities-detection-jobexemple suivant arrête une tâche de détection d'entités pii asynchrones en cours. Si l'état actuel du travail estIN_PROGRESSle suivant, le travail est marqué pour fin et placé dansSTOP_REQUESTEDcet état. Si la tâche se termine avant de pouvoir être arrêtée, elle est mise enCOMPLETEDétat.aws comprehend stop-pii-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopPiiEntitiesDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-sentiment-detection-job.
- AWS CLI
-
Pour arrêter une tâche de détection de sentiments asynchrone
L'
stop-sentiment-detection-jobexemple suivant arrête une tâche asynchrone de détection des sentiments en cours. Si l'état actuel du travail estIN_PROGRESSle suivant, le travail est marqué pour fin et placé dansSTOP_REQUESTEDcet état. Si la tâche se termine avant de pouvoir être arrêtée, elle est mise enCOMPLETEDétat.aws comprehend stop-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopSentimentDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-targeted-sentiment-detection-job.
- AWS CLI
-
Pour arrêter une tâche de détection de sentiments ciblée asynchrone
L'
stop-targeted-sentiment-detection-jobexemple suivant arrête une tâche de détection de sentiments ciblée asynchrone en cours. Si l'état actuel du travail estIN_PROGRESSle suivant, le travail est marqué pour fin et placé dansSTOP_REQUESTEDcet état. Si la tâche se termine avant de pouvoir être arrêtée, elle est mise enCOMPLETEDétat.aws comprehend stop-targeted-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLESortie :
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }Pour plus d'informations, consultez la section Analyse asynchrone pour Amazon Comprehend Insights dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopTargetedSentimentDetectionJob
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-training-document-classifier.
- AWS CLI
-
Pour arrêter l'entraînement d'un modèle de classificateur de documents
L'
stop-training-document-classifierexemple suivant arrête l'entraînement d'un modèle de classificateur de documents alors qu'il est en cours.aws comprehend stop-training-document-classifier --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifierCette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Création et gestion de modèles personnalisés dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopTrainingDocumentClassifier
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserstop-training-entity-recognizer.
- AWS CLI
-
Pour arrêter la formation d'un modèle de reconnaissance d'entités
L'
stop-training-entity-recognizerexemple suivant arrête l'entraînement d'un modèle de reconnaissance d'entités alors qu'il est en cours.aws comprehend stop-training-entity-recognizer --entity-recognizer-arn"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/examplerecognizer1"Cette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Création et gestion de modèles personnalisés dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous StopTrainingEntityRecognizer
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utilisertag-resource.
- AWS CLI
-
Exemple 1 : pour étiqueter une ressource
L'
tag-resourceexemple suivant ajoute une seule balise à une ressource Amazon Comprehend.aws comprehend tag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1\ --tagsKey=Location,Value=SeattleCette commande n'a aucune sortie.
Pour plus d'informations, consultez la section Marquage de vos ressources dans le manuel Amazon Comprehend Developer Guide.
Exemple 2 : pour ajouter plusieurs balises à une ressource
L'
tag-resourceexemple suivant ajoute plusieurs balises à une ressource Amazon Comprehend.aws comprehend tag-resource \ --resource-arn"arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1"\ --tagsKey=location,Value=SeattleKey=Department,Value=FinanceCette commande n'a aucune sortie.
Pour plus d'informations, consultez la section Marquage de vos ressources dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous TagResource
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliseruntag-resource.
- AWS CLI
-
Exemple 1 : pour supprimer une seule balise d'une ressource
L'
untag-resourceexemple suivant supprime une seule balise d'une ressource Amazon Comprehend.aws comprehend untag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1--tag-keysLocationCette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Marquage de vos ressources dans le manuel Amazon Comprehend Developer Guide.
Exemple 2 : pour supprimer plusieurs balises d'une ressource
L'
untag-resourceexemple suivant supprime plusieurs balises d'une ressource Amazon Comprehend.aws comprehend untag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1--tag-keysLocationDepartmentCette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Marquage de vos ressources dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous UntagResource
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserupdate-endpoint.
- AWS CLI
-
Exemple 1 : pour mettre à jour les unités d'inférence d'un point de terminaison
L'
update-endpointexemple suivant met à jour les informations relatives à un point de terminaison. Dans cet exemple, le nombre d'unités d'inférence est augmenté.aws comprehend update-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint--desired-inference-units2Cette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
Exemple 2 : pour mettre à jour le modèle actif d'un point de terminaison
L'
update-endpointexemple suivant met à jour les informations relatives à un point de terminaison. Dans cet exemple, le modèle actif est modifié.aws comprehend update-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint--active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-newCette commande ne produit aucun résultat.
Pour plus d'informations, consultez la section Gestion des points de terminaison Amazon Comprehend dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous UpdateEndpoint
à la section Référence des AWS CLI commandes.
-
L'exemple de code suivant montre comment utiliserupdate-flywheel.
- AWS CLI
-
Pour mettre à jour la configuration d'un volant
L'
update-flywheelexemple suivant met à jour la configuration d'un volant d'inertie. Dans cet exemple, le modèle actif du volant est mis à jour.aws comprehend update-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-modelSortie :
{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS" } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" } }Pour plus d'informations, consultez la présentation de Flywheel dans le manuel Amazon Comprehend Developer Guide.
-
Pour plus de détails sur l'API, reportez-vous UpdateFlywheel
à la section Référence des AWS CLI commandes.
-