Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Gestion des points de terminaison d'inférence à l'aide de la commande endpoints

Mode de mise au point
Gestion des points de terminaison d'inférence à l'aide de la commande endpoints - Amazon Neptune

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Vous utilisez la commande Neptune ML endpoints pour créer un point de terminaison d'inférence, vérifier son statut, le supprimer ou répertorier les points de terminaison d'inférence existants.

Création d'un point de terminaison d'inférence à l'aide de la commande Neptune ML endpoints

Une commande Neptune ML endpoints permettant de créer un point de terminaison d'inférence à partir d'un modèle créé par une tâche d'entraînement ressemble à ceci :

curl \ -X POST https://(your Neptune endpoint)/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)", "mlModelTrainingJobId": "(the model-training job-id of a completed job)" }'

Une commande Neptune ML endpoints permettant de mettre à jour un point de terminaison d'inférence existant à partir d'un modèle créé par une tâche d'entraînement ressemble à ceci :

curl \ -X POST https://(your Neptune endpoint)/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)", "update" : "true", "mlModelTrainingJobId": "(the model-training job-id of a completed job)" }'

Une commande Neptune ML endpoints permettant de créer un point de terminaison d'inférence à partir d'un modèle créé par une tâche de transformation de modèle ressemble à ceci :

curl \ -X POST https://(your Neptune endpoint)/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)", "mlModelTransformJobId": "(the model-training job-id of a completed job)" }'

Une commande Neptune ML endpoints permettant de mettre à jour un point de terminaison d'inférence existant à partir d'un modèle créé par une tâche de transformation de modèle ressemble à ceci :

curl \ -X POST https://(your Neptune endpoint)/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)", "update" : "true", "mlModelTransformJobId": "(the model-training job-id of a completed job)" }'
Paramètres de création d'un point de terminaison d'inférence endpoints
  • id : (facultatif) identifiant unique du nouveau point de terminaison d'inférence.

    Type : string. Valeur par défaut : nom horodaté généré automatiquement.

  • mlModelTrainingJobId   –   ID de tâche de la tâche d'entraînement de modèle terminée qui a créé le modèle vers lequel le point de terminaison d'inférence pointera.

    Type : string.

    Remarque : Vous devez fournir mlModelTrainingJobId ou mlModelTransformJobId.

  • mlModelTransformJobId   –   ID de tâche de la tâche de transformation de modèle terminée.

    Type : string.

    Remarque : Vous devez fournir mlModelTrainingJobId ou mlModelTransformJobId.

  • update : (facultatif) s'il est présent, ce paramètre indique qu'il s'agit d'une demande de mise à jour.

    Type : booléen. Par défaut : false

    Remarque : Vous devez fournir mlModelTrainingJobId ou mlModelTransformJobId.

  • neptuneIamRoleArn— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.

    Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.

  • modelName : (facultatif) type de modèle pour l'entraînement. Par défaut, le modèle ML est automatiquement basé sur le modelType utilisé dans le cadre du traitement de données, mais vous pouvez spécifier ici un autre type de modèle.

    Type : string. Valeur par défaut : rgcn pour les graphes hétérogènes et kge pour les graphes de connaissances. Valeurs valides : pour les graphes hétérogènes : rgcn. Pour les graphes de connaissances : kge, transe, distmult ou rotate.

  • instanceType : (facultatif) type d'instance ML utilisé pour la maintenance en ligne.

    Type : string. Par défaut : ml.m5.xlarge.

    Remarque : Le choix de l'instance ML pour un point de terminaison d'inférence dépend du type de tâche, de la taille de graphe et de votre budget. Consultez Sélection d'une instance pour un point de terminaison d'inférence.

  • instanceCount— (Facultatif) Le nombre minimum d' EC2 instances Amazon à déployer sur un point de terminaison à des fins de prévision.

    Type : entier. Par défaut : 1.

  • volumeEncryptionKMSKey— (Facultatif) La clé AWS Key Management Service (AWS KMS) utilisée par SageMaker AI pour chiffrer les données sur le volume de stockage attaché aux instances de calcul ML qui exécutent les points de terminaison.

    Type : string. Valeur par défaut : aucune.

Obtention du statut d'un point de terminaison d'inférence à l'aide de la commande Neptune ML endpoints

Voici un exemple de commande Neptune ML endpoints pour obtenir le statut d'un point de terminaison d'instance :

curl -s \ "https://(your Neptune endpoint)/ml/endpoints/(the inference endpoint ID)" \ | python -m json.tool
Paramètres d'obtention du statut d'un point de terminaison de l'instance endpoints
  • id : (obligatoire) identifiant unique du point de terminaison d'inférence.

    Type : string.

  • neptuneIamRoleArn— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.

    Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.

Suppression d'un point de terminaison d'instance à l'aide de la commande Neptune ML endpoints

Voici un exemple de commande Neptune ML endpoints permettant de supprimer un point de terminaison d'instance :

curl -s \ -X DELETE "https://(your Neptune endpoint)/ml/endpoints/(the inference endpoint ID)"

Ou encore :

curl -s \ -X DELETE "https://(your Neptune endpoint)/ml/endpoints/(the inference endpoint ID)?clean=true"
Paramètres de suppression d'un point de terminaison d'inférence endpoints
  • id : (obligatoire) identifiant unique du point de terminaison d'inférence.

    Type : string.

  • neptuneIamRoleArn— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.

    Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.

  • clean : (facultatif) indique que tous les artefacts liés à ce point de terminaison doivent également être supprimés.

    Type : booléen. Par défaut : FALSE.

Répertorier les points de terminaison d'inférence à l'aide de la commande Neptune ML endpoints

Une commande Neptune ML endpoints pour répertorier les points de terminaison d'inférence ressemble à ceci :

curl -s "https://(your Neptune endpoint)/ml/endpoints" \ | python -m json.tool

Ou encore :

curl -s "https://(your Neptune endpoint)/ml/endpoints?maxItems=3" \ | python -m json.tool
Paramètres pour répertorier les points de terminaison d'inférence dataprocessing
  • maxItems : (facultatif) nombre maximal d'éléments à renvoyer.

    Type : entier. Par défaut : 10. Valeur maximale autorisée : 1024.

  • neptuneIamRoleArn— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.

    Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.

Rubrique suivante :

Exceptions

Rubrique précédente :

Commande modeltransform
ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.