Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Vous utilisez la commande Neptune ML endpoints
pour créer un point de terminaison d'inférence, vérifier son statut, le supprimer ou répertorier les points de terminaison d'inférence existants.
Création d'un point de terminaison d'inférence à l'aide de la commande Neptune ML endpoints
Une commande Neptune ML endpoints
permettant de créer un point de terminaison d'inférence à partir d'un modèle créé par une tâche d'entraînement ressemble à ceci :
curl \ -X POST https://
(your Neptune endpoint)
/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)
", "mlModelTrainingJobId": "(the model-training job-id of a completed job)
" }'
Une commande Neptune ML endpoints
permettant de mettre à jour un point de terminaison d'inférence existant à partir d'un modèle créé par une tâche d'entraînement ressemble à ceci :
curl \ -X POST https://
(your Neptune endpoint)
/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)
", "update" : "true", "mlModelTrainingJobId": "(the model-training job-id of a completed job)
" }'
Une commande Neptune ML endpoints
permettant de créer un point de terminaison d'inférence à partir d'un modèle créé par une tâche de transformation de modèle ressemble à ceci :
curl \ -X POST https://
(your Neptune endpoint)
/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)
", "mlModelTransformJobId": "(the model-training job-id of a completed job)
" }'
Une commande Neptune ML endpoints
permettant de mettre à jour un point de terminaison d'inférence existant à partir d'un modèle créé par une tâche de transformation de modèle ressemble à ceci :
curl \ -X POST https://
(your Neptune endpoint)
/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)
", "update" : "true", "mlModelTransformJobId": "(the model-training job-id of a completed job)
" }'
Paramètres de création d'un point de terminaison d'inférence endpoints
-
id
: (facultatif) identifiant unique du nouveau point de terminaison d'inférence.Type : string. Valeur par défaut : nom horodaté généré automatiquement.
-
mlModelTrainingJobId
– ID de tâche de la tâche d'entraînement de modèle terminée qui a créé le modèle vers lequel le point de terminaison d'inférence pointera.Type : string.
Remarque : Vous devez fournir
mlModelTrainingJobId
oumlModelTransformJobId
. -
mlModelTransformJobId
– ID de tâche de la tâche de transformation de modèle terminée.Type : string.
Remarque : Vous devez fournir
mlModelTrainingJobId
oumlModelTransformJobId
. -
update
: (facultatif) s'il est présent, ce paramètre indique qu'il s'agit d'une demande de mise à jour.Type : booléen. Par défaut :
false
Remarque : Vous devez fournir
mlModelTrainingJobId
oumlModelTransformJobId
. -
neptuneIamRoleArn
— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.
-
modelName
: (facultatif) type de modèle pour l'entraînement. Par défaut, le modèle ML est automatiquement basé sur lemodelType
utilisé dans le cadre du traitement de données, mais vous pouvez spécifier ici un autre type de modèle.Type : string. Valeur par défaut :
rgcn
pour les graphes hétérogènes etkge
pour les graphes de connaissances. Valeurs valides : pour les graphes hétérogènes :rgcn
. Pour les graphes de connaissances :kge
,transe
,distmult
ourotate
. -
instanceType
: (facultatif) type d'instance ML utilisé pour la maintenance en ligne.Type : string. Par défaut :
ml.m5.xlarge
.Remarque : Le choix de l'instance ML pour un point de terminaison d'inférence dépend du type de tâche, de la taille de graphe et de votre budget. Consultez Sélection d'une instance pour un point de terminaison d'inférence.
-
instanceCount
— (Facultatif) Le nombre minimum d' EC2 instances Amazon à déployer sur un point de terminaison à des fins de prévision.Type : entier. Par défaut :
1
. -
volumeEncryptionKMSKey
— (Facultatif) La clé AWS Key Management Service (AWS KMS) utilisée par SageMaker AI pour chiffrer les données sur le volume de stockage attaché aux instances de calcul ML qui exécutent les points de terminaison.Type : string. Valeur par défaut : aucune.
Obtention du statut d'un point de terminaison d'inférence à l'aide de la commande Neptune ML endpoints
Voici un exemple de commande Neptune ML endpoints
pour obtenir le statut d'un point de terminaison d'instance :
curl -s \ "https://
(your Neptune endpoint)
/ml/endpoints/(the inference endpoint ID)
" \ | python -m json.tool
Paramètres d'obtention du statut d'un point de terminaison de l'instance endpoints
-
id
: (obligatoire) identifiant unique du point de terminaison d'inférence.Type : string.
-
neptuneIamRoleArn
— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.
Suppression d'un point de terminaison d'instance à l'aide de la commande Neptune ML endpoints
Voici un exemple de commande Neptune ML endpoints
permettant de supprimer un point de terminaison d'instance :
curl -s \ -X DELETE "https://
(your Neptune endpoint)
/ml/endpoints/(the inference endpoint ID)
"
Ou encore :
curl -s \ -X DELETE "https://
(your Neptune endpoint)
/ml/endpoints/(the inference endpoint ID)
?clean=true"
Paramètres de suppression d'un point de terminaison d'inférence endpoints
-
id
: (obligatoire) identifiant unique du point de terminaison d'inférence.Type : string.
-
neptuneIamRoleArn
— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.
-
clean
: (facultatif) indique que tous les artefacts liés à ce point de terminaison doivent également être supprimés.Type : booléen. Par défaut :
FALSE
.
Répertorier les points de terminaison d'inférence à l'aide de la commande Neptune ML endpoints
Une commande Neptune ML endpoints
pour répertorier les points de terminaison d'inférence ressemble à ceci :
curl -s "https://
(your Neptune endpoint)
/ml/endpoints" \ | python -m json.tool
Ou encore :
curl -s "https://
(your Neptune endpoint)
/ml/endpoints?maxItems=3" \ | python -m json.tool
Paramètres pour répertorier les points de terminaison d'inférence dataprocessing
-
maxItems
: (facultatif) nombre maximal d'éléments à renvoyer.Type : entier. Par défaut :
10
. Valeur maximale autorisée :1024
. -
neptuneIamRoleArn
— (Facultatif) L'ARN d'un rôle IAM fournissant à Neptune l'accès SageMaker aux ressources AI et Amazon S3.Type : string. Remarque : Il doit être répertorié dans le groupe de paramètres du cluster de bases de données, sans quoi une erreur sera générée.